
netCommons
Network Infrastructure as Commons

Release of New Open Source Software for All Ap-
plications

Deliverable Number D3.4
Version 1.0

March 2, 2018

Co-Funded by the Horizon 2020 programme of the European Union
Grant Number 688768

Project Acronym: netCommons
Project Full Title: Network Infrastructure as Commons.
Call: H2020-ICT-2015
Topic: ICT-10-2015
Type of Action: RIA
Grant Number: 688768
Project URL: http://netcommons.eu

Editor: Leonardo Maccari, UniTN
Deliverable nature: Report (R)
Dissemination level: Public (PU)
Contractual Delivery Date: December 31st, 2017
Actual Delivery Date March 2, 2018
Number of pages: 78
Keywords: community networks, applications, open source, participatory

development, Cloudy, PeerStreamer, CommonTasker
Authors: Leonardo Maccari, Luca Baldesi, Nicolò Facchi, Renato Lo Cigno UniTN

Felix Freitag, Leandro Navarro, Roc Messeguer UPC
Merkouris Karaliopoulos, Panagiota Micholia, Aris Pilichos, AUEB-RC

Peer review: Leonardo Maccari, Felix Freitag, Merkouris Karaliopoulos, Renato Lo Cigno

History of Revisions

Rev. Date Author Description

v0.1 12/6/2017 Leonardo Maccari First draft
v0.2 15/6/2017 Felix Freitag Contributions about progress in Cloudy
v0.3 15/6/2017 Leonardo Maccari First draft with T3.3 progress
v0.4 30/6/2017 M. Karaliopoulos, P. Micholia, A.

Pilichos
First draft with T3.4 progress

v0.5 30/6/2017 Renato Lo Cigno Revision and editing for web-site publication
v0.6 22/11/2017 M. Karaliopoulos Revision to accommodate the progress in the

development of the CommonTasker app
v0.7 5/12/2017 Felix Freitag, Leandro Navarro Adds Cloudy advances, new applications in

Cloudy, Internet proxies and gateways
v0.8 20/12/2017 Leonardo Maccari Revision of Cloudy plus PS completion
v0.9 23/12/2017 Felix Freitag Revision of Cloudy
v0.91 16/1/2018 M. Karaliopoulos CommonTasker completion
v1.0 28/2/2018 R. Lo Cigno final proofreading

D3.4: Software Release 2

http://netcommons.eu

Executive summary

WP3 is dedicated to open-source applications for CNs: Tasks T3.2, T3.3, and T3.4 are the three tasks, where we
develop open source code that can be used by CNs. The three tasks delivered the first version of the software at
M12 with D3.2. In the period M12–M24 they continued the development of the software, but also advanced the
research studies that are needed to support new applications and innovative solutions for CNs. This deliverable
is structured in four chapters. After a brief introduction, the progress in each of the three tasks are reported:

Chapter 2 describes the work in T3.2. In T3.2, we are working on a CN-tailored linux distribution named
Cloudy. This is a key theme for CNs, which are generally perceived as a gateway to the Internet, while they
can be the driver for the evolution of new local applications. Cloudy makes it possible to deploy services using
Docker in a way that is extremely simple for the user. Technically, it leverages the Serf gossiping protocol to
be able to notify Cloudy nodes of newly deployed applications. This deliverable reports on the introduction
of Docker-compose functionality in the Cloudy architecture, which enables developers to propose complex
services that require more than one docker containers for higher reliability and security.
Furthermore, Chapter 2 illustrates the advances made by UPC in the research related to service and gateway
placement in CNs, which will guide the future work on evolution and optimization of the Cloudy service.

Chapter 3 describes the work in T3.3. In T3.3, we focus on the development of the PeerStreamer (PS)
application. PS is an open source Peer-to-Peer (P2P) live video streaming application, unique in its kind in the
open source arena. PS is developed by UniTN and it is integrated with the new, docker-based Cloudy platform.
This integration has required substantial work since the application had to be re-engineered to become a web-
based application. PS is now a full-fledged live streaming solution that leverages the Cloudy platform to provide
a distributed live video streaming service for CNs.
Chapter 3 also reports on the theoretical advances that UniTn made in exploiting the distributed nature of CNs
to optimize the streaming function.

Chapter 4 describes the work in T3.4. In T3.4, we develop the CommonTasker Android application. The
development of CommonTasker has been initiated as a brand new project by the AUEB team for the community
of Sarantaporo.gr and progresses as a highly participatory design process, as reflected in [1] and building
on the methodology described in D3.3 [2]. The mobile app is being continuously tailored to the needs of
the community based on continuous interactions involving AUEB, Nethood, and local community members.
CommonTasker is now tailored to the collection of data from the local farmers on their every day activities in
their farms and aims to become their de facto smart assistant and online calendar. At the same time, these data
can become the missing cornerstone for the provision of smart farming services to the community by external
stakeholders/commercial service providers over the CN. This way, the app turns the CN into a key asset for
both the community and external stakeholders, scaling up the importance of the CN for the local economy and
paving the path for long-term synergies that can foster the sustainability of the network.

D3.4: Software Release 3

Contents
1 Introduction 9

1.1 WP3 in the context of netCommons . 9
1.2 Current State and Future Steps . 10

2 Update on the Cloudy Distribution 11
2.1 The proposition of edge microclouds . 11
2.2 Docker compose-based service provision in microclouds . 12

2.2.1 Software Integration . 12
2.2.2 Services from the IoT Domain and practical experimentation 15

2.3 New applications enabled by Docker . 17
2.3.1 Home Assistant . 18
2.3.2 OwnCloud and NextCloud . 18
2.3.3 Etherpad . 20

2.4 Service monitoring . 25
2.4.1 Motivation and goals . 25
2.4.2 Monitoring platform for edge clouds . 25
2.4.3 Experimental analysis . 25
2.4.4 Monitoring system prototype . 27
2.4.5 Final insight . 28

2.5 Service placement . 28
2.5.1 Goals and model . 28
2.5.2 Service placement proposal . 29
2.5.3 Evaluation and results . 30
2.5.4 Final insight . 32

2.6 Decentralized access to the Internet: proxies and Internet gateways 33
2.7 Takeaway . 35
2.8 List of publications related to T3.2 . 35

3 Developments on PeerStreamer 37
3.1 Integration of PeerStreamer into Cloudy . 38

3.1.1 Introducing PS-ng . 38
3.1.2 Internals of PS-ng . 40
3.1.3 Integration with Serf . 41

3.2 The PS-ng web interface . 42
3.2.1 PS-ng with VLC plugin . 43
3.2.2 HTML5 Solution . 44
3.2.3 WebRTC Solution . 46

3.2.3.1 Details of the ReST Interface . 47
3.3 Support for Bi-Directional streams in PeerStreamer . 48

3.3.1 Acquiring the Video with WebRTC . 49
3.3.2 Distributing SDP Files . 49
3.3.3 The modified Web Interface . 51

3.4 New Research results on P2P Video streaming on CN . 51
3.4.1 Optimized P2P Streaming for Wireless distributed Networks 52

D3.4: Software Release 4

3.4.2 On the Use of Eigenvector Centrality for Cooperative Streaming 52

4 Update on CommonTasker 54
4.1 The reshaped CommonTasker and a longer-term case study for its use 55
4.2 Application requirements . 55

4.2.1 Data collection and logging requirements (RDC) . 56
4.2.2 Information-feeding requirements (RI) . 56
4.2.3 Gamification requirements (RG) . 56
4.2.4 Social networking requirements (RS . 57
4.2.5 Data management and privacy control requirements (RP) 57
4.2.6 User profiling and authentication requirements (RPR) 57
4.2.7 User interface & graphic design (RU) . 57

4.3 Application architecture and design . 58
4.3.1 The mobile UI . 58

4.3.1.1 The splash page . 59
4.3.1.2 The Login Page . 59
4.3.1.3 The user home page . 59
4.3.1.4 The calendar module . 61
4.3.1.5 The scoreboard module . 61
4.3.1.6 The export module converting posts to PDF files 63
4.3.1.7 The notes-taking plug-in . 63
4.3.1.8 The community module . 63
4.3.1.9 The user profile pages . 65

4.3.2 Backend server . 65
4.3.2.1 Authentication . 67
4.3.2.2 Real-time Database . 68
4.3.2.3 Storage . 70
4.3.2.4 Some forward-thinking about the backend 70

4.4 Roadmap for the last year of the project . 74
4.4.1 Remaining development work . 74
4.4.2 Remaining development work and distribution of the app to the local community . . . 74

5 Conclusions and Year 3 Work 75

Bibliography 76

D3.4: Software Release 5

List of Figures
2.1 Microclouds at the network edge. 12
2.2 Docker-compose integration in the GUI. 13
2.3 Docker-compose availability in Cloudy after clicking on the installation button. 13
2.4 The Wordpress application expressed as Docker-compose specification in Cloudy. 14
2.5 The user can manage the Docker-compose-based application. 14
2.6 The Cloudy user has an option to announce a deployed service to the community. 15
2.7 The published services in the Cloudy microcloud are found by another user. 15
2.8 The published Wordpress application is accessed by a Cloudy user. 16
2.9 Pentaho service installations in Cloudy. 17
2.10 Access to the Pentaho service installed by the user. 17
2.11 Predefined templates for launching Docker containers. 18
2.12 Home Assistant: Welcome screen. 19
2.13 Home Assistant: application to send voice commands to home devices. 19
2.14 Home page with a control element for a media device (Chromecast). 20
2.15 OwnCloud: login page, a Docker container running in a Cloudy device. 20
2.16 OwnCloud: reminder of the client applications to this service. 21
2.17 OwnCloud: the file browser in the Cloudy device. 21
2.18 OwnCloud: the marketplace of installable applications. 22
2.19 NextCloud: videoconferencing application. 22
2.20 NextCloud: Group calendar application. 23
2.21 NextCloud: PDF viewer. 23
2.22 Etherpad running on a Cloudy instance with two remote editors 24
2.23 Averaged data convergence in the time elapsed for the actions of publishing and unpublishing

services. 26
2.24 Average data convergence in time elapsed for the actions of publish and unpublish services,

using the tuned gossip properties for wireless devices. 27
2.25 Average bandwidth to the cluster heads. 30
2.26 Average video chunk loss in QMP. 32
2.27 UpdateActivity-Random . 33
2.28 UpdateActivity-BASP . 33

3.1 The components of the live streaming system inside a home network. 39
3.2 The list of available services in the Cloudy interface. 39
3.3 The web interface of PS-ng using Video LAN Client. 40
3.4 The architecture of PS-ng and the integration with Cloudy. 41
3.5 The web interface of PS-ng showing the URL to the video descriptor, and the VLC program

playing the video (note the URL bar on top of the window frame). 43
3.6 An android phone playing a video with PS-ng. Note the necessary split-screen with the browser

and the VLC mobile app running at the same time. 44
3.7 The architecture of PS-ng integrated with the FFMPEG library 45
3.8 The architecture of PS-ng integrated with the Janus library 47

4.1 GAIA SENSE. GAIA Infrastructure for supporting smart farming services. 54
4.2 Splash page views . 58

D3.4: Software Release 6

4.3 Login page views . 59
4.4 The user homepage and its three parts: the calendar icon-button, the extract from the scoreboard

interface and the menu bar with four action buttons at the bottom. 60
4.5 Entry calendar screen. 60
4.6 Adding entries to the calendar interface. 61
4.7 Scoreboard layout and user post history . 62
4.8 Filtering capabilities in the scoreboard module. 62
4.9 Exporting post entries as .pdf files in the CommonTasker app. 63
4.10 Note-taking app plug-in . 64
4.11 Photo-sharing and commenting . 64
4.12 Chat interface . 65
4.13 Chatting with embedded images . 66
4.14 User profile . 66
4.15 Firebase . 67
4.16 User Authentication and creation of login ID. 68
4.17 Real-time Database: Listeners code. 69
4.18 Real-time Database: Child Event code. 69
4.19 Storage Upload item code. 70
4.20 High-level comparison between Firebase and Parse-Server, now an open-source project without

the support of Facebook. 71
4.21 Communication between mobile app and web app. 72
4.22 Authentication of a user during Sign In/Up processes. 72
4.23 Sequence diagram to create an action of their daily work. 73
4.24 Requirements for CommonTasker and level of fulfillment by current development work. . . . 73

List of Tables
2.1 Input and decision variables . 29

D3.4: Software Release 7

List of Acronyms
BASP Bandwidth and Availability-aware Service Placement
CN Community Network
DoA Description of Activity
DTLS Datagram Transport Layer Security
GUI Graphical User Interface
HLS HTTP Live Streaming
ICE Interactive Connectivity Establishment
IoT Internet of Things
ISMV IIS Smooth Streaming Video
ISP Internet Service Provider
IPFS InterPlanetary File System
JSON JavaScript Object Notation
NAT Network Address Translation
MPEG Motion Picture Expert Group
MP4 MPEG-4
NPAPI Netscape Plugin Application Programming Interface
PS PeerStreamer
ReST Representational State Transfer
RTP Real Time Protocol
SBC Single-board Computer
SME Small and medium-sized enterprise
TCP Transmission Control Protocol
P2P Peer-to-Peer
SDP Session Description Protocol
RTP Real-time Transport Protocol

D3.4: Software Release 8

1 Introduction
This report is the follow-up of D3.2 in which we documented the state of the software development carried on
in netCommons at the end of M12 [3]. In that report we introduced the Cloudy, PeerStreamer and the Com-
monTasker applications, that are the open source applications being developed in netCommons. While the first
two were started in previous EU-financed projects (the CLOMMUNITY and NAPA-WINE FP7 projects) the
latter is a new application developed from scratch in netCommons. This deliverable reports on the development
of these platforms in the second year of the project, in which we improved, stabilized and enhanced them. In
the third year of the project we will test them with the help of some selected communities, and continue their
development with the help of the methodology described in T3.1. As such, this deliverable describes the current
state of the software, which is mostly complete, but needs further assessment from the communities in order to
be improved and become fully usable.
As for [3], the actual deliverable is the software itself, its documentation, manuals, etc. that are referenced in
the proper chapters of this document, which is indeed only a summary of the strategies adopted and the results
achieved.

1.1 WP3 in the context of netCommons

In the vision of netCommons, CNs are not just a community-driven replacement of last mile access to the
Internet. CNs are also the playground to experiment with new applications that can be developed, deployed and
used by the local community. This is a key step in the direction of a new model of computation, opposite to the
centralization of applications and data on remote, commercial, cloud-based services.
Ideally, local applications could replace cloud-based ones in order to give back to the people the control on
their data, to exploit the performances of a CN as a local network (which in certain situations can be largely
better than the performance of the Internet uplink), and to foster a local economy of developers and maintainers
instead of relying on external services. In practice, it is extremely hard for local applications to compete with
commercial, cloud-based ones, which are widely used by billions of people and are highly engineered and
optimized to provide a smooth experience to the user. Local applications can leverage various factors, such as
being tailored for local needs, and having a potential set of users interested not only in the application per se
but also to its value for the community.
Therefore, it is of paramount importance to propose new applications to the communities, applications that can
be the base for local modifications to make them fulfill a specific need of the community. T3.2, T3.3, and T3.4,
in tight cooperation with T3.1 perform this activity. They produce open source software that can be proposed
to the communities and that can be the ground for further customizations and specific adoptions by the local
CN.
In this sense, the three tasks start from a different position. While Cloudy is a generic platform envisioned from
the beginning as an enabler for any application that can run on Docker, PeerStreamer and CommonTasker are
applications that have a specific use. PeerStreamer rides the current wave of interest for live streaming (Cisco
estimation say that live video will grow 15-fold between 2016-20211) while CommonTasker is developed from
scratch to match the interest of a rural community interested in precision agriculture.
Also, PeerStreamer is designed as a generic service that could be integrated in different applications, while

1See https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-
481360.html

D3.4: Software Release 9

https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

1 Introduction

CommonTasker is a more “social” application assuming interactions, feedback, and motivations for its users to
participate in a collaborative process.
This heterogeneity gives us the chance to experiment with different approaches, as we believe that the mix of
technical skills and political motivations that the participants of a CN generally own gives to researchers an
excellent opportunity to test the creation of new applications.

1.2 Current State and Future Steps

All the applications mentioned so far are extensively described in the next chapters, with details on their im-
provement from their state at M12. All the released code uses an open source license, the decision on which
specific license to use is left to the implementer, as it depends on a number of external factors, such as the
dependency on other software. All the open source code can be found in the Github repository of the project2.
This deliverable refers to the code tagged with the tag D3.4-final on each of the github repository. As men-
tioned, this deliverable is just a companion document for the release of the open source code of WP3, it is not
intended to be a user manual or a specific technical reference for the released code, it overviews its functions
and improvements. For further details, please see the documentation on each repository.
In the third year of the project, we will test these applications together with some CNs we are in contact with,
namely Guifi, ninux and Sarantaporo.gr. In this last year we will gather feedback and eventually plan new
developments on the applications based on the participatory involvement of the communities, as explained in
D3.3. Reports on this activity will be included both in D3.6 (M31) and D3.5 (M36) for the parts pertaining the
participatory methodology used and the software modifications respectively.

2See https://github.com/netcommonseu.

D3.4: Software Release 10

https://github.com/netcommonseu

2 Update on the Cloudy Distribution
With reference to T3.2, the Description of Activity (DoA) states “T3.2 will research on Community Clouds, the
application of distributed cloud systems to CNs.” The work combines the tasks of evaluating the community
cloud system, in order to assess its position and needs, and the developments of components to enable new
possibilities with the platform.
The starting point of year 2 is clearly D3.2 [3], where the initial support of Docker-provisioned services in
Cloudy was presented. Experiences with the Cloudy operation and the research on services helped gaining
insight and take decisions on developments and orientations.
The code is publicly available in https://github.com/Clommunity and https://github.com/netCommonsEU/
cDistro, and the development and research activity presented in this chapter lead also to the publication of
seven scientific papers listed in Sec. 2.8 and further documented in D6.2. These works can be grouped into
extending the service provision capabilities of Cloudy through the development of enhanced support services,
and exploring different aspects for building community clouds. The following sections describe in more detail
the work and results obtained.

2.1 The proposition of edge microclouds

The Fog [4][5] and Edge Computing [6] approaches extend the classic cloud architecture, which considers
cloud computing services to run in large data centers. In edge cloud computing, by placing computing devices
at the network edge, an additional infrastructure layer is added to the system model. As part of a cloud service,
specific functions are performed on these edge devices leveraging their closeness to the users or the data source.
Different to the above described approach, the edge microclouds which we propose leverage the resources of
other edge devices, and therefore can inherit the characteristics of cloud computing, like elastic resource and
service availability, while these microclouds are still located at the network edge.
Microclouds therefore differ from the previously described edge cloud architectures regarding the pool of re-
sources and services that are used. While, from a traditional cloud service provider perspective, edge computing
infrastructure is mainly a resource that extends the capabilities of a data center based cloud service, in micro-
clouds, the cloud resource pool for service provision are mainly the spare resources of distributed edge devices
(even if it can extend towards data center cloud services to improve the edge service performance, e.g. for
improved resilience). The collaborative element between users consists in resource donations, willingness to
host distributed services, and active provision of services with the community of users in the microcloud.
Fig. 2.1 illustrates the microcloud concept. In terms of hardware, we consider diverse types of computing
devices which are found at the network edge, ranging from mid-capacity servers at the high end to IoT boards
at the low end. These devices, by geographic location or community-tied operations are envisioned to form a
distributed infrastructure, which provides some resource elasticity to edge services. In the picture four types of
services are indicated: While the network service relates to the management of the networking infrastructure,
the other three types of services (personal, community and enterprise) indicate services belonging to different
stakeholders which use the microcloud system.
To built these collaborative edge microclouds, communication and computing devices at the network edge are
leveraged. Different hardware device classes available at the network edge can become a microcloud resource.
Mid-capacity servers may be found at municipalities and local Small and medium-sized enterprises (SMEs).
Low-capacity PCs or Single-board Computers (SBCs) are more and more used in domestic environments.

D3.4: Software Release 11

https://github.com/Clommunity
https://github.com/netCommonsEU/cDistro
https://github.com/netCommonsEU/cDistro

2 Update on the Cloudy Distribution

High-end home gateways and routers to connect to the ISP today have fairly large computing capabilities. Dif-
ferent from data center clouds, however, such edge microclouds are distributed and heterogeneous in hardware,
software, operational policies and administrative domains.
The services in these microclouds need to target the requirements of the community of the users they are to
serve, in order to encourage contribution and participation by the users. Services enabled by these collaborative
microclouds should aim for new applications or customization, and exploit the element, which are complemen-
tary to traditional cloud services.

Figure 2.1: Microclouds at the network edge.

2.2 Docker compose-based service provision in microclouds

In the first year of netCommons, Cloudy was extended to deploy applications provided as single Docker con-
tainers. In order to use the microclouds for more complex applications, i.e., composed of a set of containers
with dependencies among each other, the previous solution falls short in terms of providing an easily way for
end users to accomplish such deployments without hassle. In order to supported such applications in the Cloudy
platform, in Y2 of netCommons we have integrated Docker-compose in Cloudy as the tool for deploying such
applications. The work described here lead to the publication of [7].

2.2.1 Software Integration

The usefulness of the services in microclouds is key for motivating users and encourage volunteer activity.
While commercial players are increasing their service offer leveraging edge computing, microclouds need to
differentiate by identifying services which benefit from the horizontal sharing of resources among users, a
model not yet implemented by commercial providers.

D3.4: Software Release 12

2 Update on the Cloudy Distribution

Such promising services may include for instance machine learning for data analytics, which nowadays is
mostly done at cloud data centers. The increase of Internet of Thingss (IoTs) data generation at the network
edge, however, will create the need to perform local analytics at the edge. Microclouds may serve as infrastruc-
tures to extend the capabilities of single edge devices to conduct such tasks. Security and privacy requirements
for IoT are additional use cases which can benefit from local data analytics support.

Figure 2.2: Docker-compose integration in the GUI.

Figure 2.3: Docker-compose availability in Cloudy after clicking on the installation button.

Since the first year of netCommons, Cloudy manages Docker-based applications in the Enterprise cloud menu.
The reason for this choice was the to consider a Cloudy node as an infrastructure for multi-tentant usage. These
tenants were identified as the node owners, the community and commercial enterprises. Fig. 2.2 shows the
extension of the Enterprise cloud menu with the integration of Docker-compose in the Web Graphical User
Interface (GUI).
The Docker-compose software package is not installed in Cloudy by default, but the user at her choice can
easily install it by means of the GUI without the need to open a terminal. After the installation, Docker-
compose is available to be used. To carry out a deployment, the Docker-compose applications needs to be
specified. Fig. 2.3 shows the options given to the user to introduce the Docker-compose description in the GUI.
Fig. 2.4 illustrates an example for an application described for Docker-compose. The case we present is the
popular Wordpress application, which is often used for the hosting of Web sites and blogs.
Once the application is specified, it can be launched. Launching implies the download of the Docker images (if
not available locally) and instantiating them as containers. Fig. 2.5 shows the management options of Docker-
compose in the Web GUI, where the used Docker compose recipe can be seen.

D3.4: Software Release 13

2 Update on the Cloudy Distribution

Figure 2.4: The Wordpress application expressed as Docker-compose specification in Cloudy.

Figure 2.5: The user can manage the Docker-compose-based application.

Cloudy users are given the option to share their deployed services with the community. Once a service or
application is installed, the user has to explicitly chose to publish it. Fig. 2.6 shows for the presented case of
the Wordpress application the options for the user to publish (or not) the deployed application.
Once services are published by a user, they are found by the Search service from any other Cloudy instance.
Fig. 2.7 reports how several services at different Cloudy nodes are represented on the interface of a generic
user, even if the node they reside on is not local.

D3.4: Software Release 14

2 Update on the Cloudy Distribution

Figure 2.6: The Cloudy user has an option to announce a deployed service to the community.

Figure 2.7: The published services in the Cloudy microcloud are found by another user.

If the service is a Web application, it can directly be accessed through the search service graphical interface.
Fig. 2.8 shows how another Cloudy users can access the Web GUI Wordpress application.

2.2.2 Services from the IoT Domain and practical experimentation

Huge business potentials drive important use cases in ambient intelligence and the IoT for edge computing.
Most of today’s edge computing services, however, are build from platforms which consist of proprietary
gateways, which are either closed or fairly restricted to deploy any third-party services. This lack of openness
may indeed be an opportunity for Cloudy, which, in contrast to those restricted extension possibilities, offers
a participatory edge computing system running on home gateways to serve as an open environment to deploy
local services. We have singled out the IoT domain for experimentation to understand better the practical
possibilities and potential.
We are interested in evaluating the Cloudy use case for a large commercial IoT services provider that offers
software solution for IoT, distributing it both as a commercial enterprise edition and an open-source community
edition, in order for us to test some prototype components.
For this purpose, we have chosen Hitachi Vantara’s Pentaho open-source business intelligence (BI) suite [8],
that provides comprehensive reporting, data processing, data integration, and data mining features. The Pentaho
Data Integration (PDI) client is a desktop application that users can use to process and integrate data on their
own machines, and design data workflows that they can upload to the repository in the Pentaho Server. Users

D3.4: Software Release 15

2 Update on the Cloudy Distribution

Figure 2.8: The published Wordpress application is accessed by a Cloudy user.

can schedule jobs to run data workflows at regular intervals, and perform other advanced operations. The
Pentaho Platform also provides web-based tools to create reports, dashboard and charts in a browser. Pentaho
also includes Weka, a popular open-source data mining software, and also integrates support for executing
machine learning programs through its integration of Python and R. Pentaho provides an extensible plugin
architecture, so users can integrate support for their special use cases. For these services from Pentaho platform,
there is also the option to install them as Docker containers, as we explain in the following.
In the setup using Cloudy in Guifi.net, our goal is to deploy the Pentaho Server as a Docker container on the
nodes in the edge community cloud, which are running Cloudy software.
In the setup for the practical experimentation, we consider the scenario where each owner of the node sets up
an independent Pentaho Server instance, and the other users of the edge community microcloud will contact
the owner to obtain login credentials for that instance of Pentaho Server. For data collection and storage, the
user can have a virtual machine with a public cloud provider on the Internet, or set up another node in the
edge community cloud as an FTP or a database server, where the nodes will upload the data received from IoT
devices. In the setup, we have used PostgreSQL database that also runs as a Docker container on a Cloudy
device in parallel to other applications.
After the installation of Pentaho services in Cloudy, we can observe in Fig. 2.9 from the perspective of a
user connected to the Cloudy device with IP address 10.139.40.88 that she can find a Docker-based Pentaho
service available in the community cloud. The Pentaho service is available from a provider with IP address
10.139.40.76, while there are other services offered by different providers too.

D3.4: Software Release 16

10.139.40.88
10.139.40.76

2 Update on the Cloudy Distribution

Figure 2.9: Pentaho service installations in Cloudy.

Figure 2.10: Access to the Pentaho service installed by the user.

The Pentaho service is discoverable in Cloudy because the provider has tagged it as a shared service. Therefore
anyone in Guifi.net running Cloudy software will be able to find it.
Fig. 2.10 shows the home screen of a Pentaho service, where the user can manage stored files and scheduled
jobs, after logging in by accessing it through Cloudy web interface.

2.3 New applications enabled by Docker

The addition of Docker support, the ability to download images, run containers, and compose them, brings to
Cloudy a wide range of applications. The current list of predefined Docker images, tested and ready to launch
are listed in Fig. 2.11.

D3.4: Software Release 17

2 Update on the Cloudy Distribution

Figure 2.11: Predefined templates for launching Docker containers.

In comparison with the version of Cloudy delivered in D3.2 [3], due to the extension for Docker-compose,
we needed to re-design the internal representation for the service descriptions. The list of predefined services
has increased, which includes now for instance the HomeAssistant, Mosquitto, nextCloud, while for other
applications the description of the updated Docker images was integrated.
The following subsections describe some of these applications that illustrate the diversity of added value
brought by the Docker integration in Cloudy.

2.3.1 Home Assistant

Home Assistant is an open-source home automation platform running on Python 3. It allows to track and control
all devices at home and automate control. That includes media, security, environmental sensors, lighting, and
any other device with a wired or wireless control interface. The introductory web is shown in Fig. 2.12, a web
page to send audio messages to home devices in Fig. 2.13, and the home page with a control element for a
media device (Chromecast) in Fig. 2.14.

2.3.2 OwnCloud and NextCloud

Nextcloud is a suite of client-server software for creating and using file hosting services. It is functionally
similar to Dropbox, although Nextcloud is free and open-source, allowing anyone to install and operate it on
a private server. In fact Cloudy supports two variants: ownCloud and NextCloud, as shown in Fig. 2.15. The

D3.4: Software Release 18

2 Update on the Cloudy Distribution

Figure 2.12: Home Assistant: Welcome screen.

Figure 2.13: Home Assistant: application to send voice commands to home devices.

advantage of both is that the user can combine this service running on a Cloudy device with a client application,
as shown in Fig. 2.16, running on a mobile or desktop device to access the file repository in Fig. 2.17, that can be

D3.4: Software Release 19

2 Update on the Cloudy Distribution

Figure 2.14: Home page with a control element for a media device (Chromecast).

Figure 2.15: OwnCloud: login page, a Docker container running in a Cloudy device.

shared with multiple and external users. Both have a marketplace (see Fig. 2.18 and installable add-ons which
include complex applications like videoconferencing in Fig. 2.19, a group calendar in Fig. 2.20 document
editing (the LibreOffice suite) and visualization (PDF viewer) in Fig. 2.21.

2.3.3 Etherpad

Etherpad is an open source, web-based collaborative real-time editor, allowing authors to simultaneously edit
a text document, and see all of the participants’ edits in real-time, with the ability to display each author’s text
in their own color. A sample document being edited concurrently by two users running on a Cloudy instance is
listed in Fig. 2.22.

D3.4: Software Release 20

2 Update on the Cloudy Distribution

Figure 2.16: OwnCloud: reminder of the client applications to this service.

Figure 2.17: OwnCloud: the file browser in the Cloudy device.

D3.4: Software Release 21

2 Update on the Cloudy Distribution

Figure 2.18: OwnCloud: the marketplace of installable applications.

Figure 2.19: NextCloud: videoconferencing application.

D3.4: Software Release 22

2 Update on the Cloudy Distribution

Figure 2.20: NextCloud: Group calendar application.

Figure 2.21: NextCloud: PDF viewer.

D3.4: Software Release 23

2 Update on the Cloudy Distribution

Figure 2.22: Etherpad running on a Cloudy instance with two remote editors

D3.4: Software Release 24

2 Update on the Cloudy Distribution

2.4 Service monitoring

Information on service availability in Cloudy provides useful data to design and enable new features. Therefore,
it was considered important to understand better the options for a monitoring system in Cloudy. For this purpose
we developed and evaluated a monitoring system leveraging the gossip platform used in Cloudy. The work
described here has lead to the publication of [9].

2.4.1 Motivation and goals

Current solutions for monitoring services under classic cloud systems support and designed for the use in data
centers, which disregards the unique properties that an edge cloud environment has, such as the high latency
between nodes, changes in network (nodes churn rate), and most importantly the use of low-capacity devices.
Furthermore, an issue found in the edge cloud computing (such as community network clouds) is the lack of a
suitable mechanism for logging, monitoring of resources and services, and dissemination of information.
The main goal of this work is to investigate an efficient way for monitoring services in wireless community
network clouds, as a case study of edge cloud computing, using gossip-enabled networks to achieve efficient
data dissemination and sharing. The platform considers a decentralized way to handle the dissemination of
data, by using a gossip overlay to communicate with the nodes. Also, the platform gathers distributed data, by
using the gossip-enabled network through which it disseminates data.

2.4.2 Monitoring platform for edge clouds

Gossip protocols rely on disseminating information by utilizing a small subset of neighboring nodes to pass
data towards the whole network, instead of flooding the network or using a single server. Thus, each neighbor
is required to disseminate the messages only to its direct neighbors, forming a directed graph over the current
networks to achieve quick and efficient dissemination.
The community network environment creates its own challenges, differing from classic cloud environments,
which need to be addressed, such as low-capacity devices used, network changes (node churn rate), low band-
width and high latencies between nodes and user related privacy concerns. In our work, we address these
challenges by using eventual consistency and gossiping methods on the shared data, while also making sure
that, by means of Serf, each node can join or leave the network without affecting the overall information within
the network.
The type of information monitored can include the resources, services and social aspects of the community.
For our work, one of the main reasons to gather knowledge on the community cloud system is to have a tool to
understand social behavior on the network and the usage of services and resources. Also, the monitoring data
can be extended with additional types of information, such as service configuration, resource configuration and
usage.
The monitoring platform is split in three stages: 1) Logging of raw data from services, resources and user
interaction shared by the member nodes; 2) processing of the raw data, into a format that is user readable and
can be shared among the community, such as a time-line of service usage; 3) showing the results to the users in
the community, through the user interface, which is an additional service in Cloudy. These stages represent the
major objectives on which we focus our attention, tailoring them towards an efficient monitoring service on the
edge community cloud.

2.4.3 Experimental analysis

We conduct an evaluation by emulation of the monitoring platform, as the means to understand the character-
istics and properties relevant to a real deployment. The simulation of the gathered network gives us an insight

D3.4: Software Release 25

2 Update on the Cloudy Distribution

into best practices for an efficient way of dealing with dissemination of data across a wireless mesh network.
The emulation of nodes provides details about the scalability of the monitoring platform for edge cloud com-
puting. In this way, we can understand the properties and issues that arise when dealing with higher number of
nodes, higher latencies and the use of low-capacity devices.
The characteristics of the monitoring platform come into evidence when we analyze the results of data dissemi-
nation and convergence, scalability of the platform and the tuning of Serf properties. Data convergence gives us
the amount of data that a node receives across time, from the total disseminated data. This means that a certain
amount of time passes until a node gathers the total data (or convergence time). The time elapsed between
disseminating and convergence of data is then important to understand how consistent the system is when using
a gossip overlay.
For the evaluation, we emulate nodes and simulate the network, which allows us to obtain the average of time
for dissemination and convergence data rates, while also being able to tune certain aspects (such as gossip
interval, gossip fan-out) of the overlay created through Serf. We used the Mininet simulator [10], merged with
Mininet-Wifi [11] and Mininet ContainerNet1. Mininet-Wifi adds to Mininet the ability of simulating wireless
links. The capability of simulating wireless links is then more attuned with the environment created with
community network clouds. The ContainerNet project enables each of the emulated nodes to run as Docker
containers, guaranteeing execution isolation for each of the emulated nodes. Furthermore, we are able to run
different executions of the same applications, such as Serf, without interference among each emulated node.
In the experiments we used as network topology a random geo-positioning of the nodes, where each of the
nodes positions itself within a maximum range of 100 meters from another node. The characteristics of the
topology are drawn from the CNs, where each person connects to their nearest neighbors to join the network.
Therefore, each experiment run uses a randomly created topology, in an attempt to not be influenced by a given
network topology.
Moreover, the positioning of the nodes influence the overall latencies in the network. The nodes average
latencies can be as high as 800 milliseconds.
The evaluation is performed with several runs (around 10) and their results are averaged. The average on
these runs are enough to point out the characteristics that determine the efficiency of the monitoring platform.
Each experiment has 40 virtual nodes (Docker containers), interconnected through a virtual mesh network and
randomly positioned in the network.

Figure 2.23: Averaged data convergence in the time elapsed for the actions of publishing and unpublishing
services.

1https://github.com/mpeuster/containernet

D3.4: Software Release 26

2 Update on the Cloudy Distribution

From the experimental results we can observe the rate of data convergence across the simulated network and
infer on the data dissemination. Fig. 2.23 shows the percentage for average monitoring data convergence for
all nodes, after the services were published (dashed line) and unpublished (continuous line), averaged from all
the experiments done, where the 100% is reached when the data on all nodes is consistent. The actions are not
immediately propagated to the network, therefore the dissemination occurs some time after starting. Also, we
can see that the convergence of data in both actions happens within 1 minutes in high latency conditions. We
can observe that the convergence is done faster for the unpublish action than for publish. This is because the
nodes already know about others in the network, and thus it only requires to update the current information.
The figure also demonstrates for each action the data convergence on all nodes, which on average is 130 and
80 seconds in each action, respectively.

Figure 2.24: Average data convergence in time elapsed for the actions of publish and unpublish services,
using the tuned gossip properties for wireless devices.

Fig. 2.24 depicts the same actions (Publish and Unpublish of services) as previously, however the gossip prop-
erties (Gossip interval and Gossip fan-out) were adjusted for wireless environments. The figure shows that the
optimization done has an effect on the data dissemination and convergence on the nodes. Furthermore, the
figure also demonstrates that the convergence of data for the nodes, on average, is 87 and 38 seconds in each
action respectively. Therefore, each of the actions shown, on average, are faster (around 25%) for the wireless
community networks scenario than with the previous gossip properties.

2.4.4 Monitoring system prototype

A prototype for the monitoring platform was developed using the available low-capacity devices and con-
nected to the community network (Guifi.net). The prototype showed the feasibility for monitoring services
and resources in the edge cloud computing scenario. Therefore, services were started and terminated at cer-
tain intervals of time in the available nodes, in order to gather service usage information. The information for
each service is sent to Serf when a service is published. The information is updated in Serf when the service
terminates. Thus, all nodes can gather the logs of services within the data coming from Serf members (nodes
interconnected in the gossip overlay).
From the prototype monitoring platform, we could observe that using a gossip overlay to disseminate informa-
tion is as a suitable option for a non-critical analysis of the overall network. The shared information can be
gathered at any of the nodes that are members of the gossip overlay, within certain conditions such as the time
delay for the eventual consistency of the data, and the amount of data that is updated to each node.

D3.4: Software Release 27

2 Update on the Cloudy Distribution

With regards to the latter observation, we also observed that the size of the payload of the Serf messages is a
limitation which may affect further extensions of the monitoring system.

2.4.5 Final insight

In our experiments with node emulation and network simulation, we showed that the dissemination of data
over a gossip-enabled network is done fast enough and is suitable for non-critical shared information. We also
observed that under high latency situations and with low-capacity devices the use of a gossip-enabled network
is a best practice to overcome the harsh conditions of edge networks, while removing the need to flood the
network with information, or to know the structure of the whole infrastructure.
The directions for future research should consider studying solutions to overcome the payload limitation of the
Serf platform. One possibility is an extension of the support services by InterPlanetary File System (IPFS)2,
which does not rely on any centralized component, and appears to be an option matching very well the paradigm
of CNs. Another issue is to consider the limits of information sharing with regards to the privacy related aspects
that can arise from contributing data on resources and services of user devices.

2.5 Service placement

Just as monitoring services provides the necessary insight to improve them and maintain their functionality,
the correct placement of services in microclouds can improve performance. By putting services closer to
consumers, microclouds pursue not only a improving certain aspects of service provision, but also a low entry
barrier for the deployment of mainstream Internet services within the CN. Unfortunately, the provisioning of
the services is not so simple. Due to the large and irregular topology, high software and hardware diversity of
CNs, a “careful” placement of microclouds and services over the network is required to optimally leverage the
available resources. This section discusses the work that also lead to the contribution presented in [12].

2.5.1 Goals and model

A microcloud is a platform to deliver services to a local community of citizens within the vast CN. Services
can be of any type, ranging from personal storage to video streaming.
The model of microclouds is entirely different from fog computing, which extends centralized cloud computing
by introducing an intermediate layer between devices and datacenters, leaving the central entity in full control
of the system. Microclouds take the opposite track: by placing services close to consumers, a microcloud goal
is that no (or minimal) action takes place in the Internet. The idea is to tap into the shorter, faster connectivity
between users to deliver a better service and alleviate overload in the backbone links.
The microcloud approach, however, poses new challenges, such as that of the optimal placement of micro-
clouds within the CN to overcome suboptimal performance. In addition, a placement algorithm that is agnostic
to the state of the underlying network may lead to important inefficiencies. Although conceptually straightfor-
ward, it is challenging to calculate an optimal decision due to the dynamic nature of CNs and usage patterns.
In this part of our work the following questions are investigated:

2Citing directly from its descriptive white paper IPFS https://ipfs.io/ is

“. . . a peer-to-peer distributed file system that seeks to connect all computing devices with the same system of files. In some
ways, IPFS is similar to the Web, but IPFS could be seen as a single BitTorrent swarm, exchanging objects within one Git
repository. In other words, IPFS provides a high throughput content-addressed block storage model, with content-addressed
hyper links. This forms a generalized Merkle DAG, a data structure upon which one can build versioned file systems,
blockchains, and even a Permanent Web. IPFS combines a distributed hashtable, an incentivized block exchange, and a
self-certifying namespace. IPFS has no single point of failure, and nodes do not need to trust each other.”

D3.4: Software Release 28

https://ipfs.io/

2 Update on the Cloudy Distribution

1. Given that sufficient state information is in place, is network-aware placement enough to deliver satisfac-
tory performance to CN users?

2. Can the redundant placement of services further improve performance?

These questions are closely related to the optimal topology control for video streaming studied in [13, 14, 15]

2.5.2 Service placement proposal

Considering the concepts of service and network graphs, we can formulate the problem statement more pre-
cisely as: ”Given a service and network graph, how to place a service on a network as to maximize user QoS
and QoE, while satisfying a required level of availability for each node (N) and considering a maximum of k
service copies ?

Let Bij be the bandwidth of the path to go from node i to node j. We want a partition of k clusters (i.e.,
services) : C ← C1, C2, C3, ..., Ck of the set of nodes in the mesh network. The cluster head i of cluster Ci is
the location of the node where the service will be deployed. The partition maximizing the bandwidth from the
cluster head to the other nodes in the cluster is given by the objective function:

argmaxC

k∑
i=1

∑
j∈Ci

Bij (2.1)

with respect to the following constraints:
1. The total bandwidth used per link cannot exceed the total link capacity:

∀e ∈ E :
∑

s1,s2∈S
Xs1,s2(e)× βs1,s2 ≤ Be (2.2)

2. Availability-awareness: the node availability should be higher than the predefined threshold λ:

∀n ∈ N :
∑
n∈N

Rn ≥ λ (2.3)

Table 2.1: Input and decision variables
Symbol Description

N set of physical nodes in the network

E set of edges (physical links) in the network

S set of services

D set of service copies

k max number of service copies

Be bandwidth capacity of link e

βs1,s2 bandwidth requirement between services s1 and s2

Rn Availability of node n

λ Availability threshold

Xs1,s2
use of physical link e by at least one service for the

placement of virtual link between s1 and s2, 1 iff placed

D3.4: Software Release 29

2 Update on the Cloudy Distribution

3. Admission control: At most, k copies can be placed for each service:

|D| = k (2.4)

Solving the problem stated in Equation 2.1 in brute force for any number ofN and k is NP-hard and very costly.
The naive brute force method can be estimated by calculating the Stirling number of the second kind [16] which
counts the number of ways to partition a set of n elements into k nonempty subsets, i.e., 1

k!

∑k
j=0(−1)j−k

(
n
k

)
jn

⇒O(nkkn). Thus, due to the obvious combinatorial explosion, we propose a low-cost and fast heuristic called
BASP. The Bandwidth and Availability-aware Service Placement (BASP) allocates services taking into account
the bandwidth of the network and the node availability. The symbols used are listed in Tab. 2.1.
The BASP algorithm is given as follows (see Algorithm 1):

2.5.3 Evaluation and results

We take a network snapshot (capture) made of 71 physical nodes of the QMP network3 regarding the bandwidth
of the links and node availability. The node and bandwidth data obtained has been used to build the topology
graph of the QMP. The QMP topology graph is constructed by considering only operational nodes, marked
in ”working” status, and having one or more links pointing to another node. Additionally, we have discarded
some disconnected clusters. The links are bidirectional and unidirectional, thus we use a directed graph. The
nodes of QMP consists of Intel Atom N2600 CPU, 4GB of RAM and 120 GB of disk space. Our experiment is
comprised of 5 runs and the presented results are averaged over all the runs. Each run consists of 15 repetitions.
Fig. 2.25 depicts the average bandwidth to the cluster heads obtained with the Random, Naive K-Means and
the BASP algorithm. Here, random placement refers to the situation when service deployment is not centrally
planned but initiated individually by the CN members. The figure reveals that for any number k of services,
BASP outperforms both Naive K-Means and Random placement.

 k=1 k=2 k=3 k=5 k=7
Number of services k

0

10

20

30

40

50

Av
er

ag
e b

an
dw

idt
h t

o t
he

 cl
us

te
r h

ea
d (

Mb
ps

)

RandomQMP
NaiveKMeans
BASP

Figure 2.25: Average bandwidth to the cluster heads.

For k = 2, the average bandwidth to the cluster heads is increased from 18.3 Mbps (Naive K-Means) to 27.7
Mbps (BASP), which represents a 50% improvement. The largest increase of 67% is achieved when k = 7. On

3http://tomir.ac.upc.edu/qmpsu/index.php?cap=56d07684, part of guifi.net.

D3.4: Software Release 30

http://tomir.ac.upc.edu/qmpsu/index.php?cap=56d07684

2 Update on the Cloudy Distribution

Algorithm 1 B A S P

Require: G(N,E) . Network graph
C ← C1, C2, C3, ..., Ck . k partition of clusters
Bi . bandwidth of node i
Rn, λ . availability of node n, λ availability threshold

1: procedure PERFORMKMEANS(G, k)
2: if Rn ≥ λ then
3: return C
4: end if
5: end procedure
6: procedure FINDCLUSTERHEADS(C)
7: clusterHeads← list()
8: for all k ∈ C do
9: for all i ∈ Ck do

10: Bi ← 0
11: for all j ∈ setdiff(C, i) do
12: Bi ← Bi + estimate.route.bandw(G, i, j)
13: end for
14: clusterHeads← maxBi

15: end for
16: end for
17: return clusterHeads
18: end procedure
19: procedure RECOMPUTECLUSTERS(clusterHeads,G)
20: C′ ← list()
21: for all i ∈ clusterHeads do
22: clusteri ← list()
23: for all j ∈ setdiff(G, i) do
24: Bj ← estimate.route.bandw(G, j, i)
25: if Bj is best from other nodes i then
26: clusteri ← j
27: end if
28: C′ ← clusteri
29: end for
30: end for
31: return C′
32: end procedure

average, when having up to 7 services in the network, the gain of BASP over Naive K-Means is of 45%. Based
on the observations from Figure 2.25, the gap between the two algorithms grows as k increases. We observe
that k will increase as the network grows. And hence, BASP will presumably render better results for larger
networks than the rest of strategies.
Regarding the comparison between BASP and Random placement, we find that Random placement leads to an
inefficient use of network’s resources, and consequently to suboptimal performance. As depicted in Fig. 2.25,
the average gain of BASP over naive Random placement is 211%.
In order to understand the gains of our network-aware service placement algorithm in a real production CN,
we deploy our algorithm in real hardware connected to the nodes of the QMP network, located in the city of

D3.4: Software Release 31

2 Update on the Cloudy Distribution

Barcelona. We concentrate on benchmarking two of the most popular network-intensive applications: Live-
video streaming service, and Web 2.0 Service performed by the most popular websites [17].
We use 20 real nodes connected to the wireless nodes of QMP. These nodes are co-located in either users
homes (as home gateways, set-top-boxes, etc.) or within other infrastructures distributed around the city of
Barcelona. They run the Cloudy system. As the controller node, we leverage the experimental infrastructure
of Community-Lab4. Community-Lab provides a central coordination entity that has knowledge about the
network topology in real time and allows researchers to deploy experimental services and perform experiments
in a production CN. The nodes of QMP that are running the live video streaming service are part of Community-
Lab. In our experiments, we connect a live streaming camera (maximum bitrate of 512 kbps, 30 frame-per-
second) to a local PeerStreamer instance that acts as a source node.
Figure 2.26 shows the average chunk loss for an increasing number of sources k. The data reveals that for any
number of source nodes k, BASP outperforms the currently adopted random placement in QMP network. For
k = 1, BASP decreases the average chunk loss from 12% to 10%. This case corresponds to the scenario where
there is one single source node streaming to the 20 peers in the QMP network. Based on the observations from
Figure 2.26, the gap between the two algorithms is growing as k increases. For instance, when k = 3, we get a
3% points of improvement w.r.t. chunk loss, and a significant 37% reduction in the loss packet rate.

Figure 2.26: Average video chunk loss in QMP.

Fig. 2.27 and Fig. 2.28 report the response time observed by three clients for the update live feed operation,
when placing the web server with Random and BASP, respectively.
When placing the web server with the Random approach, Figure 2.27 reveals that, as far as we increase the
number of threads (i.e., concurrent operations) per client, the response time increases drastically in three clients.
For up to 120 operations per client (i.e., 20 threads), all clients perceive a similar response times (300-350 ms).
Response time increases more than one order of magnitude in Client 2 and Client 3, and an order of magnitude
in Client 1 when performing 160 operations (i.e., 80 threads)

2.5.4 Final insight

It is clear that even a low-complexity service placement heuristic such as the proposed BASP can greatly
improve the bandwidth allocation when deploying CN microclouds. We presented algorithmic details, analysed
its complexity, and carefully evaluated its performance with realistic settings, so that deployment in CNs can
be safely undertaken in the future. Our experimental results show that BASP consistently outperforms the

4https://community-lab.net/

D3.4: Software Release 32

https://community-lab.net/

2 Update on the Cloudy Distribution

0 10 20 30 40 50 60 70 80

Number of concurrent threads (per client)

0

2

4

6

8

10

R
es

po
ns

e
tim

e
(s

)

Client 1
Client 2
Client 3

Figure 2.27: UpdateActivity-Random

0 10 20 30 40 50 60 70 80

Number of concurrent threads (per client)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
es

po
ns

e
tim

e
(s

)

Client 1
Client 2
Client 3

Figure 2.28: UpdateActivity-BASP

currently adopted random placement in Guifi.net by 211%, i.e., more than a factor of two! Moreover,
as the number of services increases, the gain tends to increase accordingly. Furthermore, we deployed our
service placement algorithm in a real network segment of QMP network, a production CN, and quantified the
performance and effects of our algorithm. We conducted our study on the case of a live video streaming service
and Web 2.0 Service integrated through Cloudy distribution. Our experimental results show that when using the
BASP algorithm, the video chunk loss in the peer side is decreased up to 3% points, i.e., worth a 37% reduction
in the loss packet rate. When using the BASP with the Web 2.0 service, the client response times decreased up
to an order of magnitude, which is a significant improvement.

2.6 Decentralized access to the Internet: proxies and Internet gateways

While a community network may offer different applications, Internet/Web access is the most popular applica-
tion in most Community Networks (CNs). Web proxy nodes (application layer gateways) or IP tunnel servers
(network layer gateways), connected both to a CN and an ISP are often used by community network users as
Internet gateways. Most of these gateways are free as they are giving away the spare Internet capacity that
many Internet connections provide. However there are also comparable schemes where a common Internet
access is shared by a community of users and the cost is proportionately shared among them. One example of
that is the eXO association with about 70 users use IP tunnels to share Internet capacity bought in the guifi.net
Internet gateway. Many of the web proxies run on simple servers at the homes of the community members that
donate their spare Internet capacity for free. In the Cloudy distribution, this proxy service was integrated at
the beginning of the Cloudy development and is part of a set of services for network management offered by
Cloudy.
We have been looking at ways to improve different aspects of this service. One of the limitations of the current
proxy service in Guifi.net is that proxies are selected manually by the users. This may have the effect that many
users choose and burden “popular” proxies. As a consequence, potential (congested) hotspots can reduce the
quality of the user experience. In addition, the non-optimal usage of the access links saturates the available
bandwidth of these links and the shared bandwidth to the ISP, while the community member who voluntarily
shares her connectivity may suffer performance degradation in her Internet access service. This field has an
important potential for Cloudy since understanding how to build an automated proxy assignment could lead to
the design of a component, which supports this functionality in the Cloudy’s proxy service. This year we have
focused on research in three aspects: usability, scalability, and fairness, which has resulted in several research
publications.
There is a rich body of work focused on reducing the cost and increasing Internet coverage under several
scenarios. For instance, the Lowest Cost Denominator Networking (LCD-Net) [18] explores resource pooling
Internet technologies to support benevolence on the Internet. Some of these ideas are illustrated by WiFi

D3.4: Software Release 33

2 Update on the Cloudy Distribution

access sharing schemes, community-led (PAWS [19]) or commercially-run (FON [20]), where home broadband
subscribers donate their controlled (but for free) broadband Internet spare capacity to fellow citizens. This is
done by sharing a fixed portion of throughput [21]. In contrast, our work considers not just local access to a
shared WiFi hotspot, but also remote access to Internet gateways over a CN that can use any network technology,
such as, wired or wireless meshes. Our research also focuses on spare capacity, with little or no visible impact
on the primary user. This means secondary users can get from all to nothing, depending on the demand from
primary use. This activity has lead to several publications, that are important for WP3, albeit they are not
directly related to the software development in T3.2. The following paragraphs summarize these contributions
and point to the relevant publications.

Usability: Analysis of a crowdsourced Web proxy service We considered here the environment of Internet
access sharing through Web proxy gateways in local or regional CNs. In an effort to understand the effectiveness
and performance of this shared Internet access, we performed a measurement study of a crowdsourced Internet
proxy service in the guifi.net CN, that provides free Internet access to a large community with a high users
to proxies ratio. Our study focused on a representative subset of the whole network with about 900 nodes, 4
proxies and roughly 470 users of the Web proxy service. We analyzed the service from three viewpoints: Web
content of users’ traffic, performance of proxies and influence on the access network. We saw that Web proxies
in a CN can be used to provide basic Internet access. Nevertheless, we observed the necessity of a regulation
mechanism that would enable the fair and efficient usage of the available resources, considering the entire sets
of users and proxies instead of a local level.
The main results related with this contribution are presented in [22].

Scalability: Web Proxy selection mechanism To facilitate the fair usage of the Web proxy service we
investigated and built a selection mechanism for client-proxies. We developed a client-side distributed system
that optimizes the client-proxy mapping, agnostic to the underlying infrastructure and protocols, requiring
neither any modification of proxies nor to the underlying network [23]. Clients choose proxies taking into
account network congestion, proxy load and proxy performance, without requiring a minimum number of
other participating clients in order to select an adequate proxy. Our proposal was evaluated experimentally with
clients and proxies deployed in guifi.net. We show that our selection mechanism avoids proxies with heavy
load and slow internal network paths, while achieving a network overhead linear to the number of clients and
proxies. Moreover, we demonstrated that informed proxy selection and admission control in proxies could
alleviate up to a certain level imbalances and unreliability, and also improve the overall service with small
additional overhead [24]. Nevertheless, the Internet sharing process can negatively affect the service experience
of the users that share their connections, thus jeopardizing the continuity of this community service.
The main results of this research are presented in [23, 24].

Fairness: Secondary usage of spare Internet capacity Building upon the studied model of proxy usage,
we argue that it is important to differentiate between primary users, who share their Internet connection, and
the secondary users in order to preserve the contribution of the former group. To guarantee that there is no
additional cost incurred for the users sharing their connections we proposed a mechanism where a middlebox
separates the traffic of the primary users from that of the secondary users. We evaluated the efficiency and
behavior of several traffic separation mechanisms, in order to determine how to maximize network utilization
and usage of the spare network capacity, while minimizing the possible impact on the primary traffic. Finally,
we presented a set of recommendations to achieve the best performance isolation for the primary user, without
significant impact to the perceived experience of the secondary users.
The main results related with this research are presented in [25].

The lessons learned, and the ongoing research on IP tunnels as alternative gateways to Web proxies, will support
future improvements of this service in Cloudy.

D3.4: Software Release 34

2 Update on the Cloudy Distribution

2.7 Takeaway

By integrating Docker-compose into Cloudy, we have expanded the scope of applications which can be de-
ployed in Cloudy. As a consequence, a much larger set of applications, such as many Web-based applications
consisting of front-end and back-end provided as separate Docker images, can now be deployed in an user-
friendly way. Now Cloudy can interconnect (compose) several containers to run more complex services. The
increase of the reach of applications for which Cloudy can be used is important for the usability and appli-
cability of Cloudy in diverse scenarios. Specifically, there is potential for the IoT domain, where local data
management and data privacy comes into play. We have started to explore the deployment of IoT services from
the community-editions of popular commercial service providers. Additional Docker containers supported, like
HomeAssistant, bring also support for a wide range of smart home devices, like temperature or security sensors,
actuators, or digital media player devices such as Chromecast.
Several directions to enhance Cloudy with additional features were researched. One aspect we investigated was
service monitoring, which is important since it strongly relates to the distinctive characteristic of Cloudy given
by the publication of services within the Cloudy microcloud. We observed the suitability of the chosen Serf
platform with regards to fast service publication, but also observed the limitation of the payload size, which is
an obstacle for the growth in the number of services. For this purpose, we have developed support to combine
Serf with IPFS to offload Serf from data that can be served by IPFS. The result seems promising since IPFS,
like Serf, operates in a decentralized way, which is considered suitable for the organic growth of microclouds.
The aspect of service placement was investigated. Its potential lies in the capability to operate services in a more
optimized way in resource-constrained microclouds. The findings from the service placement work improve
the position of Cloudy with regards to its capability to achieve a determined quality of service and quality of
experience, which can become important for critical applications.
Our work on investigating the usage and management of the proxy servers within Guifi.net targets to improve
the performance of a major service of Guifi.net, which is Internet service provision. The gained insights help
to understand more options for the management of this service, which is key for many CN users.
In year three of netCommons, the achieved usability of Cloudy should sought to be combined with important
applications domains, like the IoT, and target enablers, such as deep learning techniques. We can observe
a strongly increasing research community in edge computing and the appearance of many solutions which
leverage similar technology as Cloudy, but our platform has a distinctive feature given by its participatory
service provision, for which we should see to make a differentiated value proposition. While application such
as deep learning still run in data centers, we can observe strong research efforts to move components closer to
the network edge, and Cloudy may find important tools and use cases for local analytics and data governance
if this tendency of the research community to enable local machine learning continues.

2.8 List of publications related to T3.2

1. “Internet Access for All: Assessing a Crowdsourced Web Proxy Service in a Community Network”,
E. Dimogerontakis, R. Meseguer and L. Navarro., in Proceedings - Passive and Active Measurement
Conference (PAM 2017), Sydney, Australia, 2017.

2. “Gossip-based Service Monitoring Platform for Wireless Edge Cloud Computing”, N. Apolónia, Freitag,
F., and Navarro, L., in Proc. of the 14th IEEE International Conference on Networking, Sensing and
Control (ICNSC), Calabria, Italy, 2017.

3. “Client-Side Routing-Agnostic Gateway Selection for heterogeneous Wireless Mesh Networks”, ME.
Dimogerontakis, Neto, J., Meseguer, R., Navarro, L., and Veiga, L., Proc. of the IFIP/IEEE International
Symposium on Integrated Network Management (IM), Lisbon, Portugal, 2017.

4. “Practical Service Placement Approach for Microservices Architecture”, M. Selimi, Cerdà-Alabern, L.,

D3.4: Software Release 35

2 Update on the Cloudy Distribution

Sánchez-Artigas, M., Freitag, F., and Veiga, L., in 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGrid 2017), Madrid, Spain, 2017.

5. ”On Edge Microclouds To Provide Local Container-based Services”, R. Baig, R. Pueyo, F. Freitag, L.
Navarro, in Global Information Infrastructure and Networking Symposium (GIIS’2017), Saint-Pierre,
France, 2017.

6. “Community Sharing of Spare Network Capacity”, E. Dimogerontakis, Meseguer, R., Navarro, L.,
Ochoa, S. F., and Veiga, L., in IEEE International Conference on Networking, Sensing and Control
(ICNSC), Calabria, Italy, 2017.

7. “Design Trade-offs of Crowdsourced Web Access in Community Networks”, E. Dimogerontakis,
Meseguer, R., Navarro, L., Ochoa, S. F., and Veiga, L., in IEEE 21st International Conference on Com-
puter Supported Cooperative Work in Design (CSCWD), Wellington, New Zealand, 2017.

D3.4: Software Release 36

3 Developments on PeerStreamer
This chapter describes the current effort in the development of the PeerStreamer application, and its deep
integration with the Cloudy platform, plus the recent advances in the research themes related to the use of
PeerStreamer over CNs.
The expected outcome for the T3.3 Task at M24 is the development of the new version of PeerStreamer with a
specific support for CNs, and the enhancement of PeerStreamer to become a web-conferencing system. During
the evolution of the project we decided to focus on the integration of PeerStreamer into the new (Docker-based)
Cloudy platform, in order to give to the CNs a unique tool that embeds several useful applications in a web-
based, easy-to-use platform. While this effort was not initially planned we decided to include it in order to
maximise the impact of the project on CNs.
In general, having people install and use different platforms is discouraging and hinders adoption. If, instead,
people can have access to a multitude of services through a single platform and an easy interface, we increase
our chances to have early adopters, feedback, consequent improvement and wider community engagement. In
a nutshell, we can have a better product and wider adoption. For this reason we decided to make the effort of
re-designing PeerStreamer in order to be fully integrated with Cloudy. That required mainly two new features:

• Integrating PeerStreamer into the Cloudy with support for the SERF protocol;
• Transforming PeerStreamer I/O components into a web-based platform.

The first task was successfully carried out, as is detailed in Sec. 3.1. Likewise, we implemented the web-
based version of PeerStreamer, which will be tested with the communities in period M24-M36 (as stated in
the DoA). Due to some difficulties given by the phasing out of the Netscape Plugin Application Programming
Interface (NPAPI) libraries (see Sec. 3.2) and the effort needed for Cloudy integration, the enhancement of
PeerStreamer as a conferencing tool has been slightly delayed. Currently, we have a stable design and an initial
implementation that needs more internal testing, while modifications to the web interface are still undergoing.
This effort will be performed in the period M24–M36 and will be documented in D3.5 at M36.
The goal of T3.3 is to explore how live P2P video streaming techniques can form the basis of key applications
like local event broadcasting, e-learning platforms and group video conferencing in CNs. The Cloudy platform,
as described in D3.2 [3] and further developed as described in Chapter 2, is a generic GNU/Linux distribution
that easily supports the creation of internal community applications. It was extended in netCommons to support
the Docker platform, which makes it even easier to extend the set of available applications. Nevertheless, the
initial experiences with Cloudy have shown that it is used mainly by “power-users” to monitor the state of the
network and of their nodes, while its use as a generic community set-top-box is still not widespread.
We believe that PeerStreamer can contribute to the diffusion of Cloudy, and, at the same time, it can benefit
from the the Cloudy platforms in terms of simplified installation and management. Thus, after the first year,
where we completed a stripped-down version of PeerStreamer that can be installed directly on network nodes
as documented in D3.2, we now followed up with work in three areas:

• The better integration of PeerStreamer into Cloudy;
• The extension of PeerStreamer as a multi-stream application;
• The design of PeerStreamer as a P2P video conferencing system.

All the realized source code can be found in the PeerStreamer-ng, psng-pyserf and
PeerStreamer-Docker repositories in the project Github account https://github.com/netCommonsEU/.

D3.4: Software Release 37

https://github.com/netCommonsEU/

3 Developments on PeerStreamer

3.1 Integration of PeerStreamer into Cloudy

Cloudy is a complex system that interconnects three main components:
• The Docker container system;
• the Serf protocol1;
• the CN.

Docker is a well known container solution that allows to run processes in separated environments. T he services
on a Cloudy distribution can be expanded adding containers with new applications that run locally in the user’s
Cloudy node. Serf is a gossip-based membership protocol, that makes it possible to distribute in a decentralized
way information among groups of members. Information can relate to the current composition of the group
(addition and removal of members) and custom events that one member generates and wants to distribute to
the other nodes. Cloudy uses Serf to distribute the knowledge about a new service in the network, after a new
container has been downloaded and run by a node. Finally, Cloudy relies on a running CN to work and assumes
that IP addresses are all routable and there are no Network Address Translation (NAT) devices in between.
PeerStreamer (PS, for brevity) is a live P2P streaming platform, already described in D3.2 [3]. It had been
already integrated in Cloudy before it switched to Docker. PS uses its own gossiping system to distribute the
video chunks among the swarm of peers that participate in the streaming session, and thus, apart from being
able to run and stop the service, the integration with Cloudy was only partial. After the work to integrate PS
in the wireless router [3], in this deliverable we describe our effort to integrate PS in Cloudy, thus, addressing
another use-case.
The main sub-tasks of this activity were:

• Making PeerStreamer available as a library of files: PeerStreamer became a set of independent com-
ponents that ease the integration of the application to other platforms. This is a revolution in the PS
architecture that was designed to run as a separate application, and forms the first step for the work
needed to include multi-stream support in PS, which is useful also for the development of PS as a con-
ference system (see Sec. 3.3). For this reason we renamed this system as next-generation PeerStreamer,
PS-ng.

• Dockerizing PeerStreamer. We realized a custom Docker image for PS, based on the Ubuntu 16.04 image
that can be downloaded from the Docker Hub2. The image contains PS, which is run in a container and
appears among the available services in Cloudy.

• Integrating PS with the Serf protocol: We realized a C language interface to make Serf communicate
with PS, so that new live video streams can be published on Serf. So, not only can Cloudy be used to run
PS, but Serf can be used by the instances of PS to notify each other about the presence of new videos.

• Realizing a Web interface for PS, which can be accessed by the user with a browser, in order to make the
user experience as smooth as possible.

3.1.1 Introducing PS-ng

Fig. 3.1 reports the configuration we imagine for PS-ng when integrated into Cloudy. The home network of a
user is provided by his wireless router that is connected to the CN and to the Cloudy device. For our testing
purposes, we used the Minix NEO Z64 which can be purchased for less than 130C and was initially used by
UPC to develop Cloudy. The device as of today has been superseded by a new model (Neo Z83-4) for a similar
price. As Cloudy has been tested on the cheaper widespread Raspberry PI boards, we will test PS on that device
in Y3. The Cloudy device can be connected to the router with a wireless or wired link, it should have an IP

1See https://www.serf.io/
2See https://cloud.docker.com/swarm/nfunitn/repository/docker/nfunitn/peerstreamer/general.

D3.4: Software Release 38

https://www.serf.io/
https://cloud.docker.com/swarm/nfunitn/repository/docker/nfunitn/peerstreamer/general

3 Developments on PeerStreamer

Figure 3.1: The components of the live streaming system inside a home network.

Figure 3.2: The list of available services in the Cloudy interface.

address that is directly reachable from the IPs outside the user’s home (no NAT in between, which is a key
feature of CNs).
In some network node (in general remote) there is a video streaming source. This source generates a live video
that can be received from any node in the network, the configuration of the source can be done following the
available documentation3. PS-ng does not depend on the video source, in our experiments we used a simple
USB webcam connected to a PC running PS-ng (details on how to generate this video are given in Sec. 3.3).
Obviously, the video quality depends on the kind of camera and on the encoding of the video, but this is
transparent to PS video distribution.
When a Cloudy node is turned on, it will connect to the Serf swarm and receive the list of the other running
Cloudy instances. This is the default behavior of Cloudy as described in [3].
The users will connect with a browser to the Cloudy device, and, using the configuration panel of Cloudy, they

3See https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki/Streaming a live camera

D3.4: Software Release 39

https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki/Streaming_a_live_camera

3 Developments on PeerStreamer

can download the PS docker image. PS will appear among the list of available services, as Fig. 3.2 shows.
Once PS-ng is launched inside Cloudy, it will again use Serf to list the current list of available videos (possibly
more than one). The users will connect through their web browser to the PS web interface directly from the
Cloudy interface, and will interact with the PS web page running on Cloudy. They will be able to see the list
of currently running videos and choose one to play in the browser or in the dedicated application (such as the
widely used Video LAN Client open source program), as shown in Fig. 3.3.

Figure 3.3: The web interface of PS-ng using Video LAN Client.

Even if this feature is not strictly required, more than one users can access the local Cloudy device, receive the
list of channels and see a different video at the same time. This use case allows more people in the same house
to watch the same video (or a different one) at the same time.

3.1.2 Internals of PS-ng

Fig. 3.4 reports the architecture of PS-ng, integrated into Cloudy, broken down into its functions. PS-ng has
been designed with modularity in mind and it leverages the flexibility of its carefully chosen components. The
core of the P2P streaming algorithms is based on the GRAPES library [26], following the architeture presented
in [27, 28, 29].
Besides the Serf communication with the Serf network, the PS Cloudy containers utilize three different com-
munication protocols:

• HTTP, for the user interface and more generally for controlling the platform;
• PS signalling and chunk protocols for P2P streaming;
• RTP, as last-mile widely supported streaming format.

We chose HTTP for controlling as it is a commonly used solution for providing user-friendly, highly portable
GUI and it does not require any installation burden for the users. PS-ng implements a Representational State
Transfer (ReST) interface upon the Mongoose HTTP library4, which has been designed to be lightweight and
highly portable, serving the GUI as HTML/Javascript document and exposing the controlling interface:

4https://www.cesanta.com/

D3.4: Software Release 40

https://www.cesanta.com/

3 Developments on PeerStreamer

Figure 3.4: The architecture of PS-ng and the integration with Cloudy.

• GET /channels : JavaScript Object Notation (JSON) list of available channels
• POST /channels/<stream id>?ipaddr=<source ip>&port=<source port>: create the streaming re-

source <stream id> and launch the streaming instance; it returns a JSON describing the resource at-
tributes with which the plugin player is initialized.

• UPDATE /channels/<stream id>: heartbeat request, to be called frequently on <stream id>
The GET /channels request is routed toward the ”Channels components”, which is in
charge of keeping an up-to-date channel list from the SERF network. The POST /chan-
nels/<stream id>?ipaddr=<source ip>&port=<source port> request is routed towards the streamer
manager which, after checking the existence of a channel with the provided parameters, launches a new PS
streaming instance using the PS library. Finally, we use a heartbeat-mechanism to keep each streaming instance
alive instead of providing a ReST streaming DELETE as we consider users not reliable and we want to prevent
streaming from being active indefinitely.
All the components building up PS-ng take advantage of the task manager, which orchestrates and manages the
periodic application tasks of:

• Handling HTTP requests,
• Refreshing the channel list from the SERF client,
• Handling the PS P2P communication.

3.1.3 Integration with Serf

Cloudy uses the Serf protocol to distribute information about the available services in the Cloudy network,
but it does not support access to the Serf primitives from inside each container. In practice, a Cloudy service
can notify other Cloudy instances of its presence (informally, broadcasting a message that says that “a new
PeerStreamer instance has been activated”), but there is no way for a PeerStreamer instance to actively control
the content of the Serf message. In our case we need a way to specify which video is produced by the source, in
order for other nodes to populate their channel list. Therefore, we need to implement a Serf library that interacts
with Serf and pushes the necessary information to the gossiping service. Please see the specific documentation
in the psng-pyserf repository at https://github.com/netCommonsEU/ to use this library.

D3.4: Software Release 41

https://github.com/netCommonsEU/

3 Developments on PeerStreamer

3.2 The PS-ng web interface

PS-ng, as described in Fig. 3.4 now embeds a custom web-server which can be accessed by browsers. From the
web page users can see the live video directly in their browsers.
The original design of PS-ng involved the use of Real-time Transport Protocol (RTP) to carry the video stream.
This approach was well justified by the following reasons:

• RTP is a standard protocol, well documented and adopted by many applications,
• RTP is natively supported by Android,
• All the most popular browsers could use the VLC Media Player plug-in5 to directly support RTP streams

in the browser. Such plug-in requires the NPAPI libraries from the browser.
Unfortunately, during the development we understood that the browsers were phasing out the support for NPAPI
libraries. Firefox in particular, which is our reference platform, removed the support since the version 52,
released in March 20176. Actually, the support is still present, so people can enable the VLC plug-in, and
probably it will still be there for a long time since other very popular plug-ins (such as the Flash player) still
need it. Nevertheless the procedure for enabling the VLC plug-in has become cumbersome, which discourages
user adoption. When facing this situation we had to decide if we could accept the compromise of a working
but user-unfriendly application, or it was better for the outcome of the project to spend more effort in re-
implementing the web interface with a different technology. We decided to follow the second path since we
favoured the impact on communities, even if this slightly delayed the developments on the video conference
tool.
Currently, the most popular way of streaming a video file is using a VIDEO HTML5 tag, while there is not
a single solution for live streaming. There are proprietary solutions (Flash, Silverlight, HTTP Live Streaming
(HLS)) that are widely used but they require browser extensions similar to the VLC one, and are progressively
being phased out in favour of standard ones. New standards are coming out, but none of them can today be
considered a de-facto standard. Among them, based on the maturity of the specifications and the available open
source implementations, we picked WebRTC7. Note that the WebRTC solution is very complex. There are few
open source implementations of WebRTC outside of the browser space, everyone of them is conceived for a
specific use-case and brings several dependencies. We had already analysed it in the first year of the project
[3], but decided at the time for a straightforward adoption of RTP. On the other hand, WebRTC is supported
by a number of browsers: Firefox, Chrome, Opera, Android and it was announced for Safari, whereas it is not
supported by Microsoft Internet Explorer. It can support two-way communications, and thus serve as the basis
for the conferencing system.
Our final choice was to support all the options:

• We decided to finalize an RTP version of the code that requires VLC, which can be used with the in-
browser plugin or opening the URL with VLC (if the user has installed VLC).

• We supported the HTML VIDEO tag with Motion Picture Expert Group (MPEG) streaming, integrating
the FFmpeg open source libraries8, which are universally supported by all browsers, but not optimized
for live video

• We realized a WebRTC version around the Janus open source platform9.
Note that the use of RTP is required also in the WebRTC protocol, but the last link (from the web server to the
browser) is completely different. Thus, we could partly re-use the code we realized in the VLC version in the

5See https://www.videolan.org/
6See https://www.mozilla.org/en-US/firefox/52.0/releasenotes/
7WebRTC is an open project supported by several major Internet players lead by Google https://webrtc.org/. The licence is very liberal

and grants perpetual irrevocable use and modification rights. WebRTC communication protocols and modes are also standardized
into RFC7874 https://tools.ietf.org/html/rfc7874 ensuring stability and openness.

8See https://ffmpeg.org/ for an overview, the general support of FFmpeg, and its licensing.
9See https://janus.conf.meetecho.com/ for an overview of the software r and the academic spin-off that developed it.

D3.4: Software Release 42

https://www.videolan.org/
https://www.mozilla.org/en-US/firefox/52.0/releasenotes/
https://webrtc.org/
https://tools.ietf.org/html/rfc7874
https://ffmpeg.org/
https://janus.conf.meetecho.com/

3 Developments on PeerStreamer

WebRTC design.
While we had the best results with the third option, we wanted to finalize the others in order to give more
options to the users, and in the experimentation phase with the communities we will decide what is the option
the communities will be more willing to support in the future.
In the next sections we will detail the solutions adopted, focusing just on the receiving side. The streamer will
be better detailed in Sec. 3.3.

3.2.1 PS-ng with VLC plugin

The PS-ng integration with VLC is the one already shown in Fig. 3.3, and relies on the generation of an RTP
stream from PS-ng web server to the browser directly. In general, this approach can face problems when the
browser is behind a NAT. In our case this is imagined to happen in a local area network (i.e. the home Wi-Fi
network) so it can be easily done without incurring in problems due to NAT or middleboxes.
In case the browser does not support the VLC plug-in the web page offers an URL that the user can click on in
order to open the video stream with any external applications, such as VLC itself. This is shown in Fig. 3.5.

Figure 3.5: The web interface of PS-ng showing the URL to the video descriptor, and the VLC program
playing the video (note the URL bar on top of the window frame).

The use of standard protocols (such as the RTP protocol) and open formats for the video and audio encoding
makes it possible, in principle, to watch the PS-ng video also on mobile devices.
The current limitation resides on the fact that we need a separate application for playing RTP videos, as in the
configuration depicted in Fig. 3.5. In our current browser-based design we require the browser to be active
during the stream, in order to detect when the user is watching the video and stop streaming when they leave.
When the browser is killed (or stopped) the Javascript contained in the web-page stops loading and the video
is not streamed anymore. This is not an issue in a standard PC, but, since Android phones send the browser to
sleep when a new app is launched, we have an additional difficulty in the current set-up to use PS-ng on mobile
devices.
Fig. 3.6 depicts a video stream played on an Android device, note that there are two applications running, a
browser and the VLC app in parallel. This configuration is not really usable but shows that the building blocks
of PS-ng are compatible with the Android mobile environment even in the VLC version. The usability problem

D3.4: Software Release 43

3 Developments on PeerStreamer

Figure 3.6: An android phone playing a video with PS-ng. Note the necessary split-screen with the browser
and the VLC mobile app running at the same time.

could be avoided with a custom mobile app that loads the web page and plays the stream, but also with the
adoption of WebRTC, which is supported by mobile browsers.

3.2.2 HTML5 Solution

The solution based on the HTML5 standard uses the open source FFmpeg library with the FFMUXER function,
which multiplexes an RTP stream into an MPEG-4 (MP4) container to be served directly to the browser.
As Fig. 3.7 shows, the source produces a generic video with the RTP format, this choice is kept for compati-
bility with the previous solution and does not impact the architecture. The RTP stream is “chunkized” by the
PeerStreamer at the source, which means it is split into content-independent transmission units, passed to the
P2P network made of the PeerStreamer instances, and finally reaches the PeerStreamer on the user device. So
far, the architecture is the same one used for the VLC solution.
Here it is “de-chunkized” and the original RTP stream is reconstructed and passed to the FFMUXER, which
takes the RTP stream, synchronizes audio and video (which are actually two different streams), inserts it into
an MP4 container which is finally transmitted to the client browser using HTTP chunks. In a bit more details
what happens is that when the HTML5 VIDEO tag sends an HTTP request to PeerStreamer-NG, the Streamer
instance responsible for the requested video saves a reference to the socket opened for handling the request
and initializes the FFMUXER module. During the initialization process, the FFMUXER module reads the
previously buffered RTP messages for retrieving the video and audio streams information (e.g., video and
audio encoding, real bit-rate, frames per second, duration, etc.) which are then used to create an internal
object used for generating the MP4 container that will be sent to the browser. In particular, the video and the
audio streams are multiplexed into an IIS Smooth Streaming Video (ISMV) file type, that is an MP4 container
with fragmented and multiplexed payload specially packaged for streaming. Finally, the FFMUXER is fed
with the RTP messages extracted from the PeerStreamer chunks for creating the MP4 output container that is
transmitted (as HTTP chunks) to the browser using the socket previously open by the client and saved by the
Streamer instance. Note that, for efficiency reasons, the FFMUXER does not save any output video container
on the file system of the host running PeerStreamer-NG. Instead, everything is handled in memory using the
functionality provided by the FFMPEG dynamic buffers.
This is the major difference from the previous solution, in which the PS-ng web page using Javascript, detected

D3.4: Software Release 44

3 Developments on PeerStreamer

P2P
Overlay

Source
(e.g., ffmpeg, vlc)

Source
Streamer

RTP ChunkizerRTP P2P Chunks

Task manager

ReST Interface
HTTP Library

Router

Channels

RTP DeChunkizer

GRAPES

FFMUXER

RTP

Streamer

PeerStreamer-NG

External Channels
Database

P2P Chunks

Chanel 1
Chanel 2
Chanel 3
Chanel 4

<video ...>
 <source
 src="movie.mp4"
 type="video/mp4"
 >
</video>

MP4 container
<Chunked HTTP>

ReST APIs
<HTTP flow>

Figure 3.7: The architecture of PS-ng integrated with the FFMPEG library

the presence of the VLC plugin and directly started streaming the RTP messages to the plug-in. In this case
instead, FFMUXER handles the RTP messages directly inside PeerStreamer-NG and generates the MP4 con-
tainer that is served as HTTP chunks to the HTML5 VIDEO tag which is dynamically generated into the web
page served to the client browser.
The main advantage of this solution is that every browser supports the playback of an MP4 video inside a
VIDEO frame, and so, it is the most portable of all. The main drawback is instead that this video transport
scheme is not imagined for live streaming, the browser expects to receive a video from a file (as it happens for
video-on-demand platforms). Thus, it does expect the video to be interrupted (in case of temporary network
outage), but it expects all the video to be completely transported, one frame after the other as a unicast HTTP
connection runs on top of the Transmission Control Protocol (TCP), which is reliable and delivers information
in order. Since instead in PeerStreamer architecture this is only the last leg of a P2P distribution, frames may
arrive out-of-order and can also be lost, thus interacting negatively with the HTML5 VIDEO tag. Indeed, in
the live video scenario instead there are chances that some video chunks may be lost, and so that the resulting
stream could have holes and interruptions. In a live video stream this is normal and accepted, the video player
should just skip the missing frame and move to the next one. In a unicast file-based video stream this cannot
happen as TCP will stop and recover lost information. The outcome is that the browser video players, albeit
tolerating it to a certain extent, behave in different and potentially erratic ways.
The solution to this problem is to offer a video to the browser that, even if it does not contain all the frames,
at least has a streaming continuity so that at every instant the player has something to play, and does not enter
a starvation condition. In a nutshell, we need to buffer the video. This is done in two places, before the
FFMUXER the RTP messages are buffered by the PeerStreamer instance, so the FFMPEG library receives
long enough RTP streams to recognize and synchronize the video and audio streams, and after the FFMUXER,
the HTTP chunks are buffered before being served to the browser. With this approach, the video playback is
stable, but a delay is necessarily introduced. We were able to produce a stable video playback in our laboratory
deployment with a delay estimated between 5 and 10 seconds.

D3.4: Software Release 45

3 Developments on PeerStreamer

While this needs to be fine tuned in order to potentially optimize the dimension of the buffers, we observe
that this delay is not compatible with a live streaming (let alone with an interactive application) and thus, we
introduced the WebRTC solution documented in Sec. 3.2.3.

3.2.3 WebRTC Solution

WebRTC is a newly defined specification that

“provides browsers and mobile applications with Real-Time Communications (RTC) capabilities via
simple APIs.”

As mentioned above, WebRTC is backed by Google, Mozilla and Opera, among others; it provides a specifica-
tion and a code-base, and it is adopted by live streaming services such as Google Meet and Jitsi10.
We already considered the adoption of PS-ng in the OpenWRT version of PeerStreamer [3], and, for that
specific application it resulted too complex to implement, especially because initially the target platform at
the time was a wireless router with little computational resources and disk space. With the Cloudy integration
we expect to be able to run PS-ng in a more powerful device and we explored ways to use the WebRTC
code base offered by some open source projects. Contrarily to the HTML5 solution in fact, WebRTC carries a
number of complex features that can not be simply re-implemented in PS-ng. For instance, a mandatory support
for tunneling protocols (such as STUN or Interactive Connectivity Establishment (ICE)), Datagram Transport
Layer Security (DTLS) and a complex state machine and API. Since we want to interface with a standard
browser, we can not strip down the requested functionalities to the minimum, as the browser may request them
anyway.
To cope with this complexity we decided to use the Janus platform, that is an open source general purpose
WebRTC gateway. Janus is a general purpose gateway, described in Janus website as:

“it implements the means to set up a WebRTC media communication with a browser, exchanging JSON
messages with it, and relaying RTP/RTCP and messages between browsers and the server-side appli-
cation logic they are attached to. Any specific feature/application needs to be implemented in server
side plugins, that browsers can then contact via the gateway to take advantage of the functionality they
provide.”

In practice Janus mediates between a source of RTP video (as in our case, PS-ng) and a browser that needs to
access it. It exposes APIs and interfaces so that the commands that the browser sends through a Javascript page
will be passed from Janus to a specific plug-in implementing the needed functions (such as stopping/pausing
the video).
Fig. 3.8 describes the architecture of the WebRTC-based solution. The source is not changed and thus it is
not represented, the only difference with the previous scheme, is that WebRTC does mandates a specific video
encoding, so the video source will have to encode the video in the open VP8 standard. PS-ng, whose internals
are hidden in the figure for simplicity, will communicate with Janus using a Janus plug-in. This plug-in is
called P2STR and it uses the Janus plug-in APIs. Janus makes available to the plug-ins a HTTP transport
layer, which the plug-in can leverage to provide a ReST interface. This ReST interface accepts commands from
PS-ng, in order to control the plug-in, and from the browser in order to establish WebRTC communications.
The web page that is displayed to the user contains Javascript code that interacts with the plug-in, using REST.
Therefore, the code developed to interact with Janus is divided in two parts:

• a C language plug-in, running server side, using Janus extension (p2str.c);
• a Javascript code, running on client side (p2str.js).

10Jitsi is one of the few independent and free conferencing tools available https://meet.jit.si.

D3.4: Software Release 46

https://meet.jit.si

3 Developments on PeerStreamer

PSng

Http Request

Overlay
P2P

CHUNK RTP

P2STR Janus

Http plugin

RTP VP8

SRTP VP8

P2STR
CMDS

WebRTC Chanel 1
Chanel 2
Chanel 3
Chanel 4

VP8

Figure 3.8: The architecture of PS-ng integrated with the Janus library

The role of Janus is to route requests back and forth, to receive the RTP stream that PS-ng generates and to
embed it into a WebRTC stream to the browser. While Sec. 3.2.3.1 describes the interactions in detail, in a
nutshell, what happens when a video is displayed is the following:

• The user loads a web-page with a list of channels available, exactly as in the previous cases;
• PS-ng receives REST calls from the browser to start a video, so it:

– sends a REST call to p2str.c to create a new RTP2WebRTC tunnel,
– starts the RTP stream to Janus/P2STR;

• Janus routes it back to the browser via WebRTC.
The main advantage of this configuration is that WebRTC is imagined for live interaction, thus, the delay we
measured in our lab set-up is lower than a second. Another advantage is that Janus is already prepared to
acquire the video from the web browser (i.e., a webcam) and push it back to PS-ng. This is key in the video
conference scenario, but also to ease the realization of a video source. Moreover, WebRTC can be used also
in mobile devices that may not support VLC. The drawback of this solution is the burden of complexity that
Janus introduces, a separate daemon running, a set of complex interactions between the two projects (Janus and
Ps-ng).

3.2.3.1 Details of the ReST Interface

This section details the interfaces and the workflow needed to set-up a video stream.
p2str.js implements the following interface:

1. createJanus();
2. startStream(streamID);

The first one instantiates a WebRTC peer capable of interacting with Janus, the JS end-point of the WebRTC
session. The startStream function is responsible of requesting Janus for a particular streaming instance and
visualize the video in the HTML related component.
p2str.c implements the following interface:

D3.4: Software Release 47

3 Developments on PeerStreamer

1. {"request": "create", "type": "rtp"}: to create a streaming mountpoint for a given in-
put RTP stream;

2. {"request": "destroy", "id": <streamID>}: to destroy a given streaming mountpoint;
3. {"request": "watch", "id": <streamID>}: to join an RTP stream through a valid We-

bRTC connection;
4. {"request": "start", "id": <streamID>}: to start streaming an incoming RTP stream

through a valid WebRTC connection;
5. {"request": "stop", "id": <streamID>}: to stop streaming an incoming RTP stream

through a valid WebRTC connection;
The first two calls, for the management of the mountpoint, are implemented in PS-ng which is responsible
of setting up and down the RTP streams. The latter three p2str calls are instead demanded to the web client
interface which, through the browser API and Janus Javascript library, can create valid WebRTC connections.
The typical workflow is the following one:

1. the web client requests a stream by calling POST /channels/<stream_id> with payload
ipaddr=<sourceip>&port=<sourceport>

2. PeerStreamer-ng then:
a) instantiates a P2P streamer for the P2P source: <sourceip>,<sourceport>;
b) set the output of that streamer toward a convenient set of RTP ports:

<port_audio>,<port_video>;
c) calls the P2STR request

http://localhost:8088/janus/<mgmt_session>/<mgmt_handle>
with the following data structure:

{"transaction": "random", "janus": "message",
"body": {"request": "create", "type": "rtp","audio": true,

"audioport": <port_audio>, "audiopt": 111,
"audiortpmap": "opus/48000/2","video": true,
"videoport": <port_video>, "videopt": 100,
"videortpmap": "VP8/90000"}

}

and it collects the JSON answer containing the streamID;
d) returns the newly created channel description inclusive of the streamID to the web client.

3. the web client can finally call startStream(streamID) that:
a) calls the ’watch’ method of P2STR Janus extension;
b) create a video component and redirect the incoming media to it.

3.3 Support for Bi-Directional streams in PeerStreamer

So far, we assumed the presence of a video source that streams the live video to the P2P network. This can
be easily realized with several open source programs, like the already mentioned VLC. VLC can acquire the
video stream directly from a webcam (or a file) and produce an RTP stream encoded with the right parameters
needed by all the solutions mentioned so far. This can be done with a script, and should be possible with
VLC graphical interface. VLC will not only generate the video but also a descriptor file (based on the Session
Description Protocol (SDP) syntax, as described later on), which is distributed in the Cloudy network using
Serf. This configuration assumes that the person running the video source will execute a few commands to start

D3.4: Software Release 48

3 Developments on PeerStreamer

the video11. While this is feasible in general for a P2P-TV application, in which there is one person running
a source and a multitude of other people only receiving it, it is not practical for a two-way communication
between people in a conference, and must be managed in some other way.
Thus, essentially three steps are needed to move from a P2P-TV towards a P2P videoconference system:

1. The automation of the video acquisition,
2. The creation and management of the video descriptor file, and
3. The changes in the user interface.

We analyse these three steps in detail in the next sections.

3.3.1 Acquiring the Video with WebRTC

The advantage of relying on Janus is that, being a media gateway, it accepts the video streams in both directions.
We can modify the architecture of PS-ng and the P2STR plug-in in order not only to receive the video, but also
to acquire it from a camera and forward it to Janus. Janus will then convert it to a simple RTP stream, that we
can then distribute with PeerStreamer.
In order to realize this task, p2str.js implements the following interface:

1. createJanus();
2. startSource(streamID);

The first one instantiates a WebRTC peer capable of interacting with the running Janus instance of
PeerStreamer-ng, as in the previous case. The startSource function is responsible of sending Janus content
for a particular streamID (identifying a unique position).
p2str.c Janus extension implements the following interface:

1. {"request": "create", "type": "webrtc2rtp"}: to create a valid bridge instance be-
tween WebRTC and RTP ports (it returns the streamID);

2. {"request": "destroy", "id": <streamID>}: to destroy the bridge.
Both calls are intended to be called by PeerStreamer-ng, which is also the one managing the RTP ports to be
open. The workflow is then following one:

1. the web client requests to stream by calling POST /mysources/<channel_name>

2. PeerStreamer-ng:
a) instantiates a P2P streamer source listening to the selected RTP ports;
b) calls the P2STR request to create a WebRTC2RTP bridge;
c) returns the newly created channel description inclusive of the streamID to the web client.

3. the web client can finally call startSource(streamID) which
a) captures the webcam video;
b) send the video to the Janus WebRTC instance.

This part of the project is still under development. While we have some running code, it still needs to be tested,
we will stabilize it in the period M24-M36 and report on it in D3.5.

3.3.2 Distributing SDP Files

A video player, to be able to play a video needs to know some of the parameters needed to decode the video
itself. These parameters, when opening a file, are generally embedded in the headers of the video container,

11Scripts used in our tests can be found in the PS documentation: https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki/
Streaming a live camera

D3.4: Software Release 49

https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki/Streaming_a_live_camera
https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki/Streaming_a_live_camera

3 Developments on PeerStreamer

but when the video is live streamed, there must be a way for the player to acquire these details with an ‘out of
band’ channel.
One standard way of describing multimedia contents is the SDP format, a standardized format for describing
video sessions [30] that several video players already support. SDP is human readable, and a typical descriptor
is made of a subset of the fields reported in Listing 3.1.

S e s s i o n d e s c r i p t i o n
v= (p r o t o c o l v e r s i o n)
o= (o r i g i n a t o r and s e s s i o n i d e n t i f i e r)
s= (s e s s i o n name)
i =* (s e s s i o n i n f o r m a t i o n)
u=* (URI of d e s c r i p t i o n)
e=* (e m a i l a d d r e s s)
p=* (phone number)
c=* (c o n n e c t i o n i n f o r m a t i o n − n o t r e q u i r e d i f i n c l u d e d i n a l l media)
b=* (z e r o o r more bandwid th i n f o r m a t i o n l i n e s)

One or more t ime d e s c r i p t i o n s (’ t = ’ and ’ r = ’ l i n e s ; s e e below)
z=* (t ime zone a d j u s t m e n t s)
k=* (e n c r y p t i o n key)
a=* (z e r o o r more s e s s i o n a t t r i b u t e l i n e s)

Zero o r more media d e s c r i p t i o n s
Time d e s c r i p t i o n
t = (t ime t h e s e s s i o n i s a c t i v e)
r =* (z e r o o r more r e p e a t t i m e s)

Media d e s c r i p t i o n , i f p r e s e n t
m= (media name and t r a n s p o r t a d d r e s s)
i =* (media t i t l e)
c=* (c o n n e c t i o n i n f o r m a t i o n − o p t i o n a l i f i n c l u d e d a t s e s s i o n l e v e l)
b=* (z e r o o r more bandwid th i n f o r m a t i o n l i n e s)
k=* (e n c r y p t i o n key)
a=* (z e r o o r more media a t t r i b u t e l i n e s)

Listing 3.1: The available fields in the SDP format.

In the Cloudy integration we use Serf to distribute SDP files. For each video source, the group of peers that
exchange the video chunks is different (the group of peers is called an overlay in the P2P terminology), and
each peer collects the SDP file from Serf.
In the case of video conference, before deciding how to distribute SDPs there is one architectural choice to be
made: all the videos can be transferred on the same overlay, or one overlay per video can be used. Which one is
the best solution is still an open research challenge: on the one hand, overlays (as we observe in Sec. 3.4) tend
to be optimized for one stream, so that in a video conference we expect to have better performances if every
source uses a different overlay. On the other hand, maintaining an overlay requires some traffic overhead due
to control packets, and thus, having one overlay only could be more efficient in terms of network usage.
For the time being, we decided to opt for one overlay per stream, so that we can use Serf to distribute the SDP
in a similar way to the single source case. Nevertheless, we are designing also the introduction of SDP files
in the signalling mechanisms of PeerStreamer in order to support more than one stream per overlay. The SDP

D3.4: Software Release 50

3 Developments on PeerStreamer

description was added to the topology description messages in PS. Once a peer enters a new overlay, it will
poll other peers with topology messages. These messages are used to ask and receive a set of IP addresses of
available peers in the overlay, in order to build a partial view of the PS overlay topology, sufficient to participate
to the video chunk distribution. We added to the topology messages an optional list of the available session
identifiers, with a pointer to a known peer that is currently distributing it. Each session identifier represents one
video stream and consequently one SDP descriptor. Once the new peer has collected a list of identifiers, it will
collect the SDP directly from the corresponding peers.
With this mechanism, the workflow of a potential P2P video conference is the following one:

1. The user enables PS in the Cloudy interface;
2. The PS web interface collects the information about the available video streaming sessions. Among

them, there will be typical one-to-many streams (like P2P-TV) but also the currently ongoing group
conferences;

3. The user will choose one of the ongoing conferences, then PS will start collecting information on the
peers that are present in the corresponding overlay;

4. Together with the information on the peer PS collects also information about the video sources (probably
one per peer). This information is not shown in the channel list, but is managed internally by PS;

5. PS will start showing the available video sources in the PS web interface.
This solution is still under development, but it has a lower priority than the Serf-based one, which is easier to
achieve in the short term.

3.3.3 The modified Web Interface

The last step needed to turn PS-ng into a conferencing application is to modify the web interface in order to
accommodate all the video sources. For the initial roll-out of the platform we plan to support 2-5 sources, and
possibly more receivers, and so, the interface should not require massive modifications.
After that number of users, the scalability of WebRTC itself is to be explored. As a reference, Google Hangout,
that runs on a proprietary centralized platform limits the number of participants to 25 (so as Skype does12),
but contemporarily shows only up to 10 videos13. This is mostly due to the limitations in terms of CPU and
memory usage of the browser, as Google has virtually limitless capacity on the back-end server. In our case the
back-end is the Cloudy device, so we can’t expect our conference call to support such a high number of users,
even if the solution is distributed.
The modification to the Web interface will be documented in D3.5 at M36.

3.4 New Research results on P2P Video streaming on CN

Two new publications have been produced in the field of P2P video streaming optimization for CNs:
• Leonardo Maccari, Nicolò Facchi, Luca Baldesi, Renato Lo Cigno: “Optimized P2P Streaming for Wire-

less distributed Networks”, Journal of Pervasive and Mobile Computing, Volume 42, pages 335-350, Dec.
2017.

• Luca Baldesi, Leonardo Maccari, Renato Lo Cigno: “On the Use of Eigenvector Centrality for Coopera-
tive Streaming”, IEEE Communications Letters, Volume 21, Issue:9 , pages 1953–1956, Sept. 2017.

The two proposals are complementary and are under implementation in an experimental branch of the PS-ng
software. In this section we briefly summarize their content, that can be found in the above publications [15, 31].

12See https://blogs.skype.com/news/2016/02/18/announcing-group-video-calling-for-mobile-phones-and-tablets/
13See https://gsuiteupdates.googleblog.com/2016/03/connect-with-more-people-using-google.html

D3.4: Software Release 51

https://blogs.skype.com/news/2016/02/18/announcing-group-video-calling-for-mobile-phones-and-tablets/
https://gsuiteupdates.googleblog.com/2016/03/connect-with-more-people-using-google.html

3 Developments on PeerStreamer

3.4.1 Optimized P2P Streaming for Wireless distributed Networks

The key factor hampering P2P development, specially for video distribution, has been the difficulty to realize
P2P overlays optimized from the point of view of the Internet Service Providers (ISPs), mostly due to lack of
information on the physical network. The reasons of this difficulty are threefold. First, the TCP/IP protocol
suite naturally separate the application protocols from the network protocols, making it very difficult to perform
any kind of cross-layer optimization. Second, ISPs are very reluctant to discover details (routes, costs, etc.) of
their networks. Third, the business and economic sustainability of the P2P paradigm was yet not explored
and understood, and in any case it clashes with the interests of well established ISP, which have no interest in
supporting it.
In mesh networks, the underlay is normally known, since the routing protocols export it to each node (as long as
a link-state routing protocol is used), which removes one of the technical barriers that blocked the deployment
of P2P video streaming on the Internet.
In [15], we proposed a cross-layer optimization scheme to perform live video streaming (i.e., with a strict
deadline on the arrival delay) in mesh networks. The optimization minimizes the impact of the streaming
overlay on the underlay network exploiting information on the topology and the routing of the underlay. The
optimization is based on the concept of centrality, taking into account the centrality of peers in the underlay
graph, the optimized overlay topology greatly improves the efficiency of the video distribution and maintains
high performance.
More specifically, the key paper contributions are as follows:

• We formalize an optimization problem that, given the underlay of the P2P network and the peers in the
overlay, finds the overlay topology whose cost on the underlay is minimum. We define the cost of the
overlay as a combined metric composed by the load and the fairness imposed by the overlay on the
underlay;

• We prove that the optimal strategy is NP-complete by reducing it to a quadratic knapsack problem;
• We propose two techniques for relaxing the optimal strategy, which relies on the concept of between-

ness centrality of the nodes of the underlay. The relaxed strategies are applicable to any wireless mesh
network, as long as they use a link-state routing protocol;

• We further improve the performance of the relaxation strategies by introducing a neighborhood pruning
heuristic, which exploits characteristics often found in real network scenarios;

• We evaluate the proposed relaxation strategies and pruning heuristics through extensive simulations that
compute the best overlay, according to each proposed technique, on synthetic network topologies. Sim-
ulation results show that the proposed relaxations and heuristics are reasonably close to the optimal
solution and largely outperform random overlay building strategies.

The paper builds on a previous work published in Y1 of netCommons, in which we first formalized the opti-
mization problem and then introduced the relaxation strategy [14]. This paper extends these results with further
optimizations to make the proposal even more efficient in overlays with a realistic topology, i.e. comprising
many leaf-nodes in the network graph.

3.4.2 On the Use of Eigenvector Centrality for Cooperative Streaming

As we said in Sec. 3.4.1 the typical assumption done in P2P video streaming is that the underlying physical
network is unknown. In such conditions, the best choice of the overlay graph is a purely random graph, for
several reasons we do not treat here. Once the assumption falls, and the overlay is built in a way that matches
the underlay, a new problem emerges, that is, how to propagate the video chunks in an overlay that is not
anymore “random” but has a definite structure, and thus, a purely random propagation may be suboptimal.
Consider a generic network represented by a graph G(V, E); vi ∈ V is the generic node, and eij ∈ E means
there is a connection between vi and vj . The streaming source is a network node that generates a packetized

D3.4: Software Release 52

3 Developments on PeerStreamer

video with a rate of one packet every τ s and sends one copy of each packet to a set of nodes chosen from its
neighborhood. Each node vi stores the received packets in a temporary buffer, and every τi s it picks another
node vj among its neighbors and a packet stored in the buffer and forward the latter to the former with a unicast
transmission. This way packets percolate from the source to all the nodes in the network. We assume that
neighbor nodes share the composition of their buffer one another, so that when a node receives a new packet
it knows for which of its neighbors this packet is useful (the neighbor does not own it). This assumption is
realistic because the buffer maps can be easily piggybacked on content.
The problem we tackled in [31] is twofold: i) define the values of τi per each node; ii) define a strategy for the
choice of the target neighbor. The constraints we posed are that at steady state every node receives the entire
content, and at the same time the overall resources used to achieve this goal are minimal.
In [31] we showed that this can be obtained exploiting the eigenvector centrality of the normalized adjacency
matrix describing G and that there is a performance improvement in terms of reduced packet loss and delivery
delay compared to other solutions currently in use. Finally we highlighted that the eigenvector centrality can
be efficiently estimated with distributed algorithms, so that the implementation of our solution in real systems
is feasible and can scale up to systems made of hundreds of nodes.

D3.4: Software Release 53

4 Update on CommonTasker
CommonTasker has been conceived from the beginning as an Android mobile app that will serve the needs of
the Sarantaporo.gr community. The original idea about the application was that it could feature three discrete
components, enabling users to crowdsource tasks, exchange information (e.g., question and answers capabili-
ties), and share equipment in line with the sharing economy paradigm, respectively. However, from the very
beginning, the work on it has followed the participatory design approach and has relied on interactions of
various forms with the local community in shaping its scope and features.
These interactions escalated during a workshop in the Sarantaporo area in November 2016. The workshop
participants included community members but also actors from the broader Greek community of commons and
the private sector documented in D3.1 [1]. The fruitful discussions in that workshop and the reaction of the
community to different topics presented by the workshop participants, motivated the focusing of the application
towards the data crowdsourcing functionality. The idea that attracted most the interest of local farmers was to
turn the application into an online assistant, which would help them record and organize their everyday activities
in their farms but also share them, where appropriate, with other community members and external actors.
Particularly inspiring to this end was a presentation by a Greek SME called GAIA Epicheirein (hereafter re-
ferred to as GAIA) on smart farming. Smart farming is an umbrella term for practices that leverage the modern
ICT technology for optimizing farming tasks. It can generate a number of benefits for farmers such as reduc-
ing the production cost and ameliorating the quality and quantity of products, saving environmental resources
and minimizing the risk for the farmers. Almost two years ago, GAIA launched the provision of experimental
smart farming services with the aim to provide them commercially country-wide by 2019. Their platform,
called GAIA Sense, is built in the cloud and combines four different types of data: satellite images openly
available by the European Space Agency (ESA) for research purposes; data on environmental conditions (tem-
perature, humidity, air pressure) and ground sanity (acidity, penetration of water, ingredients etc) automatically
collected by custom IoT telemetric devices called GAIATrons; and detailed data that needs to be provided man-
ually by the farmers through a web application about their daily activities in the farm (e.g., time and duration
of irrigation, time of field fertilization, chemical composition and brand of fertilizers used).

Figure 4.1: GAIA SENSE. GAIA Infrastructure for supporting smart farming services.

D3.4: Software Release 54

4 Update on CommonTasker

These data are then processed in the cloud through smart farming analytics to generate knowledge that is fed
back to farmers as visualizations, best practice advice and recommendations by experienced agronomists, as
sketched out in Fig. 4.1.

4.1 The reshaped CommonTasker and a longer-term case study for its use

After the November 2016 workshop and through several interactions with community members that followed
and are documented in D3.3 [2], the CommonTasker’s scope has evolved towards a multipurpose tool that
will become the de facto online assistant of local farmers in their everyday farming activities. This implies
capabilities such as recording data on-the-go about all carried out farming tasks and practices about them,
scheduling activities, extracting and exporting information out of these records as files, and sharing data and
tips with colleagues and friends. We detail the design requirements that arose for CommonTasker and how
these have been addressed during the development phase in Sec. 4.2. As a result of this iteration on its scope,
CommonTasker is turned to an app that serves professional needs of the local community, and eventually,
the local economy as such. This way, it multiplies the value of the Sarantaporo.gr CN and its impact on the
community it serves.
Notably, the interactions that followed the November 2016 workshop hinted at an even more ambitious and
impactful role of CommonTasker for the Sarantaporo.gr CN in the longer term. The collection of data from
farmers has emerged as a bottleneck for the smart farming services GAIA intends to offer. Contrary to the other
types of data that become available either independently or automatically, this data requires the active human
involvement. However, the majority of the agricultural population appear reluctant to use Web forms to log
such data, although most of them keep their manual logs in various ways.
Briefly, CommonTasker could become the vehicle for a synergy of the Sarantaporo.gr CN with GAIA along the
following lines:

• The services of GAIA would be offered over the CN in the area of Sarantaporo rather than over 2.5G
networks as the case is in other areas in Greece. This would leverage further the value of the CN for the
local community and serve as a strong incentive for its participation in the CN;

• The CommonTasker app would serve the collection of data from the population in the Sarantaporo area
over the CN. The application would be promoted as a local app and would account for the data privacy
concerns and preferences of the local community. Hence, it would have far better chances to overcome
what is currently the bottleneck for the implementation of GAIA’s smart farming services;

• GAIA would also contribute in kind to the Sarantaporo.gr CN maintenance and evolution (i.e., through
sponsoring nodes).

Such a synergy could emerge as a major contribution to the Sarantaporo.gr CN’s pursuit of economic sus-
tainability and serve as a guide for its longer-term strategy. Nevertheless, the actual implementation of such a
synergy is a vision that goes far beyond the scope of Task 3.4. The economic implications, e.g., business model,
of such a synergy are further explored theoretically in the context of Task 2.2 of the project.

4.2 Application requirements

The reorientation of the CommonTasker app, as described in Chapter 4, implies that the app should combine
calendar/log capabilities and gamification functionality, the former for enabling the collection of data and the
latter for motivating it. For the same purpose, that is making the application more attractive and promoting
its frequent use, the app should support basic social networking features, such as the possibility to define
“friends”, share photos, chat with them, add comments/likes to content they upload etc. Equally important
is the dimension of data management and privacy, which could be a sensitive issue for the local community
(see Sec. 4.2.5). The application should give farmers some control over which data they share and when. This

D3.4: Software Release 55

4 Update on CommonTasker

capability will be crucial if Sarantaporo.gr would undertake the role of proxy/intermediate for managing the
availability of data from community members to third-party service providers such as GAIA.
In what follows, we codify the requirements for the CommonTasker app, as these have been emerging through
the participatory design process outlined in D3.1 [1] and formalized further in D3.3 [2]. We categorize them
along the main functionalities the app features. It should be noted that this list of requirements is a dynamic
one. It gets updated over time in line with feedback obtained from all the stakeholders involved in the Saran-
taporo.gr CN. What is listed below reflects its status by M24 of the project, i.e., in an advanced stage of app
development. Hence, it can be considered quite stable, although additions/modifications to it should not be
excluded throughout its development and pilot deployment phases.

4.2.1 Data collection and logging requirements (RDC)

The application should:
• (RDC1) provide an easy way for a user to log information about everyday farming activities such as

irrigation, top dressing, spraying, tillage;
• (RDC2) let the user detail custom information about each activity: for example, the duration of irrigation

or the amount of fertilizer used;
• (RDC3) support the collection and uploading of photos which are collected from the field on-the-go;
• (RDC4) support the offline collection of data, when network connectivity is problematic, and their up-

loading when network connectivity resumes;
• (RDC5) help the user easily search and browse through past entries as well as organize them according

to their date and scope;
• (RDC6) provide users with ways to export all or properly filtered subsets of posts as a printable document

such as a .pdf file;
• (RDC7) let users schedule and get reminders about (periodically repeating) tasks such as maintenance

tasks related to their farming equipment.

4.2.2 Information-feeding requirements (RI)

Interviewed members of the community insisted that the app should also ease the availability of important
information pertaining to farming such as weather updates and relevant alerts from institutions that issue warn-
ings/recommendations about threats pertaining to certain cultivations. Hence, CommonTasker should:

• (RI1) provide up-to-date prognostic information about the weather in the area;
• (RI2) capture and broadcast to the farmers alerts and warnings about threats to certain cultivations. These

are highly seasonal and are issued by institutions such as the Ministry of Agriculture and public Regional
Centers of Plant Protection and Qualitative Control.

4.2.3 Gamification requirements (RG)

The gamification component should leverage well-known practices for encouraging a contest between individ-
ual users but also groups of users. Therefore, it should:

• (RG1) keep a log of information posts by individual users and compensate them with points for their
contributions;

• (RG2) award them with different points, depending on the frequency, volume, and completeness of the
provided information;

• (RG3) rank users according to their contributions and visualize these ranks in smart eye-capturing ways;

D3.4: Software Release 56

4 Update on CommonTasker

• (RG4) support filtering capabilities in ranking users, i.e., present the rank of a particular user among apps
users belonging to a specific age-group or coming from her village only;

• (RG5) support aggregation capabilities in that the scores of users can be aggregated on age group or
village basis, and the ranks are over age groups villages, respectively;

• (RG6) couple the score keeping for the app users with offers from either the Sarantaporo.gr (and, in the
longer term, by third-party service providers such as GAIA), to motivate the sustained participation of
users in the app.

4.2.4 Social networking requirements (RS

The social networking layer aims to make the application more attractive and align it with current trends in
application design and user expectations. The CommonTasker social component should:

• (RS1) let users exchange photographs, not necessarily related to their farming activities;
• (RS2) give users the opportunity to define friends in the app, follow other users, and exchange likes/com-

ments for content they upload;
• (RS3) support chat/instant messaging between users, in ways that are familiar to them through main-

stream social apps.

4.2.5 Data management and privacy control requirements (RP)

One of the requirements from the app, in line with the values and principles embedded in the operation of CNs,
is to let users exercise control over their data. In the longer term, there could be three levels of data storage in
the system: a local one at the user premises, storing their own data; a server at the CN premises, storing data
from all CN users; and, an external cloud, either by a dedicated cloud service provider or by a service provider
(e.g., GAIA), which could aggregate data from more users, beyond those from the Sarantaporo area. To this
end, the application should

• (RP1) let users specify which posts are for private use and which ones can be shared;
• (RP2) have an alert sign on posting pages reminding them the setting they have chosen for the specific

post;
• (RP3) implement reciprocity in the sharing of data, i.e., a user would be able to see and benefit from

postings from other users as far as she shares her data as well.

4.2.6 User profiling and authentication requirements (RPR)

The user profiles created by the application should
• (RPR1) include information about the number and location of farms and what is cultivated in each;
• (RPR2) provide them with the interfaces to determine their privacy settings;
• (RPR3) request from users the minimal personal information needed for the app, i.e., they could log the

age group of the user rather than their precise age;
• (RPR4) let them authenticate through multiple identifiers, including their email, mobile phone number,

and accounts in other social media.

4.2.7 User interface & graphic design (RU)

Finally, it is worth recalling that the target group for the application includes people with very elementary or
near zero familiarity with the use of mobile apps. Except for the training that has to be made to these people, it
is important to maintain the user interface as simple as possible. At the same time, it would help to customize it

D3.4: Software Release 57

4 Update on CommonTasker

in ways that the users feel more comfortable with, i.e., using local pictures as background and icons with clear
semantics. In summary, the app should:

• (RU1) create a simple, straight-forward user experience, building as much as possible on concepts, visu-
alizations, icons, interfaces users are familiar with;

• (RU2) provide a user with a graphical interface hinting at the use of a calendar;
• (RU3) minimize the need for textual inputs from user by using drop-down menus, picker buttons and

default choices as aggressively as possible;
• (RU4) adopt guidelines with respect to fonts and font sizes that account for the needs of elderly people.

4.3 Application architecture and design

The functionality of the app is split between two main parts:
• The mobile client running on a smart mobile device (Mobile UI);
• The application back-end, currently implemented over the Firebase web platform.

These two parts are further detailed in the following subsections.

4.3.1 The mobile UI

It is implemented over the Android OS, with the use of Android studio.
It has nine main components detailed in the following nine divisions of this subsection.

(a) Animated splash page of the
mobile app: entry frame

(b) Animated splash page of the
mobile app: second frame

Figure 4.2: Splash page views

D3.4: Software Release 58

4 Update on CommonTasker

(a) Login page of the mobile app (b) Login page with Google cre-
dentials authentication

Figure 4.3: Login page views

4.3.1.1 The splash page

Its main objective is to communicate the scope of the application in a eye-capturing way. It consists of two
frames presented sequentially to the user. The first one combines a background picture of the area with a
welcome message. The second one points to farming with a message summarizing the application functionality
and an exit button that leads to the app homepage, as shown in Fig. 4.2.

4.3.1.2 The Login Page

This page is going to focus on the Authentication service provided by Firebase using Google Sign-In and
Firebase Authentication with Realtime Database. We can click on the Google Sign-in button to trigger the
Google pop up. If signing in is successful, the developer console will log in and confirm our user in the apps
the process of identifying an individual takes a primary unique token, as shown in Fig. 4.3.

4.3.1.3 The user home page

After the splash page, the mobile app user lands on the homepage. We may identify three different parts in it,
as shown in Fig. 4.4.
On the top part of the screen, there is a small extract of the scoreboard reporting how the user ranks with respect
to data posting and sharing and how many points (s)he has collected so far.
Below this scoreboard extract, there is an action button with a calendar icon. This is the entry point to the
calendar module, an interface through which the user can add posts for all the tasks she carries out in her
farm(s).
Finally, the bottom part of the screen is occupied by a menu bar letting access to four items: the user profile,
the scoreboard structure (“rank” button), an add-in component for making brief notes and setting reminders
(’stickies’ button), and the social layer of the app (’community’ button).

D3.4: Software Release 59

4 Update on CommonTasker

Figure 4.4: The user homepage and its three parts: the calendar icon-button, the extract from the scoreboard
interface and the menu bar with four action buttons at the bottom.

Figure 4.5: Entry calendar screen.

D3.4: Software Release 60

4 Update on CommonTasker

(a) Creating an entry (b) BetterSpinner choices to the entry (c) Form for adding an almond-irrigation
entry to the calendar

Figure 4.6: Adding entries to the calendar interface.

4.3.1.4 The calendar module

This represents the core functionality of the application. It presents the user with a calendar interface, where
she can add entries for different activities undertaken in the farm (Fig. 4.5). The user may scroll the calendar
left and right to the proper month and choose a day to make an entry for a task.
As soon as the green ADD button is pressed, the user is presented with a menu of all the farms she has declared
in her profile. She chooses the one her entry is intended for and, through the profile information, the app knows
what kind of crop (e.g., almond, chestnut, apple etc) the entry relates to. Depending on the crop, the user is
presented with a drop-down menu of the possible relevant activities for the specific crop; for instance, irrigation,
spraying, tree pruning. The choice of each of these activities opens an activity-specific form that is customized
for the activity context (Fig. 4.6). For example, if the activity is irrigation, the form has user-friendly interfaces
for logging the duration of the activity, the time, the volume of water used, the method (e.g., surface, sprinker,
drip/trickle).

4.3.1.5 The scoreboard module

This component is a major part of the gamification functionality in the app. It computes and reports the points
that users collect for sharing posts and knowledge with other application users. By pushing the “rank” button
in the homepage, users are navigated to the main scoreboard page that logs their current rank among the other
app users, as shown in Fig. 4.7 (a).
The top of the main scoreboard page includes a menu bar with three buttons. The ’history’ button offers view
to the list of prior user posts, as one can see in Fig. 4.7 (b).
The scoreboard page also provides a filter button. Through this, the user may choose to filter the full ranking

D3.4: Software Release 61

4 Update on CommonTasker

(a) Main scoreboard page (b) History of user shared posts

Figure 4.7: Scoreboard layout and user post history

(a) Filtering options (b) Filter user per village in the main
rank page.

Figure 4.8: Filtering capabilities in the scoreboard module.

D3.4: Software Release 62

4 Update on CommonTasker

(a) Main converter page of the mobile app (b) Possible ways to act on PDF files

Figure 4.9: Exporting post entries as .pdf files in the CommonTasker app.

information in the scoreboard according to age group or village of origin (Fig. 4.8). There is also the possibility
to aggregate scores across villages and depict how villages as a whole rank in the contest of sharing posts.

4.3.1.6 The export module converting posts to PDF files

The different post entries of the user can be captured as pictures and be exported as .pdf files. The entries can
be inserted in an internal local files in the mobile phone for long-term use (user history). These files may be
processed (e.g., printed, deleted and shared), as shown in Fig. 4.9.

4.3.1.7 The notes-taking plug-in

This is a generic add-on letting the user make notes on-the-go about tasks/things she does not want to forget.
Each entry can be marked as simple or persistent; in the latter case, it stays on the list and is not deleted.
Fig. 4.10 reports the normal read mode (a) and a note marked persistent (b).

4.3.1.8 The community module

By pressing the button “community” in the homepage, the user opens the social networking functionality of
the app. Essentially, the user gets access to a sub-application that gives him the opportunity to interact with
fellow farmers in ways she/he is familiar with by her experience with mainstream social networking sites. This
wrap-up sub-application includes:

• A photo-sharing component (Fig. 4.11 (a)): This piece of the (sub-)application aims to let users create
and share moments of social everyday interaction. Each farmer can create photo snapshots and process

D3.4: Software Release 63

4 Update on CommonTasker

(a) Main page (read mode) (b) Mark a note as persistent (edit mode)

Figure 4.10: Note-taking app plug-in

(a) Add a new image in newsfeed (b) Comment a news feed image

Figure 4.11: Photo-sharing and commenting

D3.4: Software Release 64

4 Update on CommonTasker

(a) Main page (b) Adding a friend to the chat

Figure 4.12: Chat interface

them with an appropriate commentary on a photo. She can also act on the photo, i.e., add a Like or an
encouraging comment;

• A chat component (Fig. 4.11 (b)): This let a user create a chat either point-to-point or in group mode.
He/She can dynamically change his friends and automatically create groups with users who better fit to
the current topic of discussion.

Indeed, this sub-app features its own distinct profiling capabilities. The user can determine which other users
to follow (assisted by rich search functionality), which users view what she shares, and create multiple groups
for sharing different things. Fig. 4.12 and Fig. 4.13 report four snapshots showing the main page of the chat in-
terface (Fig. 4.12 (a)), the action of adding a friend (Fig. 4.12 (b)), a chat with embedded images (Fig. 4.13 (a)),
and finally the action of sending an image on the chat (Fig. 4.13 (b)).

4.3.1.9 The user profile pages

This is the generic profile of the user containing the global information the user wants to share on the app
(Fig. 4.14 (a)). By tapping the ’My fields’ button, she/he can navigate over her fields in Google maps, while a
sliding list at the bottom of the screen summarizes the basic information (area, crop) for each of them, following
the user focus (Fig. 4.14 (b)).
The profile can be edited by tapping the pencil on the right. The user can update his/her personal information
(Fig. 4.14 (c)), while a selection on the left hand side gives him the opportunity to move towards one of three
directions: either to the main homepage, either to the community or the track with his file records.

4.3.2 Backend server

The backend server is currently implemented on Firebase as shown in Fig. 4.15. Firebase is a mobile and web
application development platform, made up of complementary features that developers can mix-and-match to

D3.4: Software Release 65

4 Update on CommonTasker

(a) Chatting interface (b) Sending the image

Figure 4.13: Chatting with embedded images

(a) Main page (b) Field browser (c) Editing profile info

Figure 4.14: User profile

D3.4: Software Release 66

4 Update on CommonTasker

Figure 4.15: Firebase

fit their needs. CommonTasker utilizes Firebase services to store the received user inputs. Firebase allows for
data storage in JSON format and immediate synchronization across all platforms and devices when changes
are performed in the data. These desired features have enabled a flexible real-time version of CommonTasker.
In fact, response data for the application are delivered within seconds (within 200 ms after the arrival on the
asynchronous database).
The integration of Firebase libraries includes the following steps:

1. Adding rules to the build.gradlefile, to include google-services plugin;
2. In app/build.gradle file add: applying plugin: ‘com.google.gms.google-services’;
3. Adding dependencies using packages com.google.firebase:firebase-auth:11.0.2 for Authentication,

com.google.firebase:firebase-database:11.0.2 for Real-time Database and com.google.firebase:firebase-
storage:11.0.2 for Storage.

Additional services of Firebase used in the updated version of CommonTasker are presented in detail below.

4.3.2.1 Authentication

Authentication is performed using the Firebase Auth service and grants write-access to the owner of this user
account, whose uid must exactly match the key (getUid), and read access to any user who is logged in with an
email and password.
Firebase Auth is a service that can authenticate users using only client-side code. Additionally, it includes a
user management system that enables user authentication via email and password login stored in Firebase. It is
possible to trigger a function in response to the creation and deletion of user accounts via Firebase Authentica-
tion. In detail, the app can send a welcome email to a user who has just created an account using the following
steps. First, obtain an instance of this class by calling getInstance(). Then, sign up or sign in as user with one
of the following methods:

• createUserWithEmailAndPassword(String,String)
• signInWithEmailAndPassword(String,String)
• signInWithCredential(AuthCredential)
• signInAnonymously()
• signInWithCustomToken(String)

When users sign in to the app, their sign-in credentials (for example, their username and password) are sent to

D3.4: Software Release 67

4 Update on CommonTasker

Figure 4.16: User Authentication and creation of login ID.

the authentication server. The server checks the credentials and returns a custom token if they are valid. After
a user signs in for the first time, a new user account is created and linked to the credentials—that is, the user
name and password, phone number, or auth provider information—the user signed in with. This new account
is stored as part of the Firebase project, and can be used to identify a user across every app in your project,
regardless of how the user signs in.
After having added Firebase and Authentication dependencies to CommonTasker, we can let the user create
login id through the following steps described in Fig. 4.16.

4.3.2.2 Real-time Database

The Real-time Database service provides an API that allows application data to be synchronized across clients
and stored on Firebase Cloud. The ReST API uses the Server-Sent Events protocol, which is an API for creating
HTTP connections for receiving push notifications from a server.
The Real-time database supports functions that manage authentication credentials. A Firebase reference repre-
sents a particular location in your Database and can be used for reading or writing data to that database location.
This class is the starting point for all database operations. After one initialises it with a URL, she can use it to
read data, write data, and to create new DatabaseReferences. With Cloud Functions, you can handle events in
the Firebase Realtime Database with no need to update client code. Cloud Functions lets run database opera-
tions with full administrative privileges, and ensures that each change to the database is processed individually.
Functions enable handling database events at two levels of specificity: one can listen specifically for creation,
update, or deletion events only; or one can listen to a path for a change of any kind.
Cloud Functions supports the following event handlers for Realtime Database:

D3.4: Software Release 68

4 Update on CommonTasker

Figure 4.17: Real-time Database: Listeners code.

Figure 4.18: Real-time Database: Child Event code.

• onWrite(), which is triggered when data is created, destroyed, or changed in the Realtime Database;
• onCreate(), which is triggered when new data is created in the Realtime Database;
• onUpdate(), triggered when data is updated in the Realtime Database;
• onDelete(), which is triggered when data is deleted from the Realtime Database. To control when a

function should be triggered, call ref(path).
The Firebase Realtime Database can be accessed directly from a mobile device or web browser, i.e., there’s
no need for an application server. Security and data validation are available through the Firebase Realtime
Database Security Rules, expression-based rules that are executed when data is read or written.
Data can be fetched by adding a listener named ValueEventListener to DatabaseReference by following the
codes in Figure 4.17 and 4.18.
Moreover, data can be retrieved in sorted order by using one of the following functions:

• orderByChild() - orders results by the value of child key;
• orderByKey() - orders results by child keys;
• orderByValue()- orders results by child values.

Lastly, data can be deleted using current DatabaseReference by calling removeValue() function.

D3.4: Software Release 69

4 Update on CommonTasker

Figure 4.19: Storage Upload item code.

4.3.2.3 Storage

Firebase Storage provides secure file uploads and downloads for Firebase apps, regardless of network quality.
The storage feature enables storing files such as images, audio, video. Data is stored in a highly secure and ro-
bust environment and upload/download operations can resume from a previous updated point in case a network
error occurs. The steps reported in Fig. 4.19 are followed to use the storage feature in the android application.

4.3.2.4 Some forward-thinking about the backend

Open-source alternatives to Firebase: Firebase is a powerful tool that features a rich set of capabilities and
enjoys trust from many app developers. Its development is a vivid project, at least for the time being, and it is
led by Google. The company hosts the service in the cloud, supporting its operation and updates. Given the
additional functionalities it leverages from other Google services and its attractive pricing policy (free up to 1
GB storage space and 10 GB downloads monthly, 25 USD per month for more intensive usage), it emerged as
the apparent backend choice for developing the mobile app.
However, this decision was not the outcome of exhaustive search and comparison. Firebase has some drawbacks
in our case, related mainly to the flexibility about managing the app data. It is not open source and does not
cater for self hosting, which would allow the deployment of the backend service at some local server in the
Sarantaporo.gr CN.
One task that will be carried out in the remainder of the project, is a feasibility study of substituting Firebase
with an open-source backend solution. One of the most promising solutions in this respect is Parse Server.
The tool was originally developed and supported by Facebook under the label Parse. However, the project was
ceased by Facebook in end Jan 2017 and at the same day an open source substitute, with limited capabilities,
was released under the name Parse Server. The community of developers that maintains Parse Server at github
have restored much of the original functionality of the Parse since then. A brief comparison of the two tools is
given in Fig. 4.20.

D3.4: Software Release 70

4 Update on CommonTasker

Figure 4.20: High-level comparison between Firebase and Parse-Server, now an open-source project without
the support of Facebook.

The breadth and depth of the feasibility study and the subsequent steps to be taken, beyond the time horizon
of the project, will ultimately depend on the outcome of interactions with the Sarantaporo.gr community in the
context of the participatory design process. Namely, how strong their concerns will be about where data are
stored as well as what are the available resources locally for supporting the application.

Catering for external service providers like GAIA: In Sec. 4.1 we mentioned the possibility to make the
app data available to external service providers (e.g., GAIA), in the context of strategic synergy of the Saran-
taporo.gr CN with them. In that case, the CommonTasker should be enhanced with additional interfaces that
depend on the application at hand (Fig. 4.21).
In the specific example of interfacing with the GAIA Sense platform, the minimum additional functionalities
of CommonTasker would include:

• The API that needs to be defined between the GAIA provider cloud and Firebase (or any other
mobile app backend that might substitute Firebase);

• The synchronization of users’ accounts in the GAIA web app and their profiles in CommonTasker.
This requires the flexibility to sign-in users (using multiple providers, like Facebook Login or Google
Sign-in) and then have the authentication system recognize the user even if they tried signing in via a
different method. When authenticating with an email/password, one can store in Shared Preferences
an authentication token, which can be used later to restore a session even after the app is killed. Upon
creating a new user, the user can be registered and then logged in realtime database. Firebase will then
retrieve farmer data from the GAIA Cloud through the API, match them with the auth token and join
with the Score database reference (Fig. 4.22 and Fig. 4.23).

D3.4: Software Release 71

4 Update on CommonTasker

Firebase

API link

HTTP-based request

-Sign In

-Scoreboard

- Feedback and motivational

messages

-Realtime Chat

-Sign In

- Information Calendar

- Analytics

HTTP-based request

Figure 4.21: Communication between mobile app and web app.

Figure 4.22: Authentication of a user during Sign In/Up processes.

D3.4: Software Release 72

4 Update on CommonTasker

Figure 4.23: Sequence diagram to create an action of their daily work.

Data collection and logging RDC1 RDC2 RDC3 RDC4 RDC5 RDC6 RDC7

Information feeding RI1 RI2

Gamification RG1 RG2 RG3 RG4 RG5 RG6

Social networking RS1 RS2 RS3

Data management and privacy control RP1 RP2 RP3

User profiling RPR1 RPR2 RPR3 RPR4

User interface and graphic design RU1 RU2 RU3 RU4

 complete

design questions need to be clarified

ongoing development work

Figure 4.24: Requirements for CommonTasker and level of fulfillment by current development work.

D3.4: Software Release 73

4 Update on CommonTasker

4.4 Roadmap for the last year of the project

4.4.1 Remaining development work

The development work that has been carried out so far has addressed almost all requirements related to the
data collection and logging module (at least for selected cases of crops), as well as the gamification, social
networking and the user profiling modules. It has also implemented most of the requirements that relate to
the user interface and graphic design. On the contrary, moderate progress is achieved so far with respect
to the data privacy and management requirements. Further interactions with the community are required to
capture the sensitivity of the locals to data control and ownership issues. These issues are interrelated with the
extent to which the rich functionality of the Firebase backend could be substituted by an open-source backend
implementation that is portable to the local (CN) infrastructure.
The status of the current development work for the CommonTasker app in terms of realizing the requirements
in Sec. 4.2 is summarized in Fig. 4.24.

4.4.2 Remaining development work and distribution of the app to the local community

Three sequential phases are envisaged for the work on the application in Y3 of the project.

Phase 1: The development work on the CommonTasker will continue addressing the requirements that are
not yet satisfied (see 4.4.1). This involves the interaction with the local community and the Sarantaporo.gr
management team and the resolution of open issues. The details of this interaction are given in netCommons
D3.3 [2].
Phase 1 is intended to last till mid March 2018. By then, the plan is to hold another meeting in the area of
Sarantaporo, to present the first test release of the app to the local community. The exact format of the meeting
is to be defined, i.e., whether it will be open to the whole local community or targeted to selected members, as
the case was with the November ’16 workshop.
One of the meeting tasks will consist in defining a beta testing team that will be constantly downloading and
testing new releases of the app.

Phase 2: The definition of the beta testing team marks the starting point of Phase 2 in the app progress. The
development work will continue, only now it will be largely driven by the feedback received by the intended
users of the app. The design iterations and ramifications, in response to interactions with Sarantaporo.gr, will
also continue, only they are expected to be more sporadic than in Phase 1.
Finally, in July, possibly by the time of the last netCommons plenary meeting, the app will be launched and
become available to the local community.

Phase 3: With the launch of the app Phase 3 starts, during which the app will be used by farmers and will be
assessed with respect to the impact it can have on their daily routine.

D3.4: Software Release 74

5 Conclusions and Year 3 Work
This deliverable has given a detailed record on the state of development of the source code realized by the three
development tasks of WP3. All the tasks are mostly aligned with what was expected at M24, with some small
delays that can be easily recovered in the third year, but also with many interesting and un-predicted interesting
developments.
The third year of the project, in fact, is devoted to the active dissemination of the software products in existing
community networks, which were selected during the first two years and with which we kept continuous con-
tacts and interactions. With all the selected communities (Guifi, ninux, and Sarantaporo.gr) we will discuss in
order to encourage them to use our software, and we will make ourselves available for testing and improving
the code and react to their feedback. All the tasks are ready to offer to the communities at least a subset of the
final features to test, and keep developing the rest, if needed.
In the third year, the interaction with the community will be guided by the results of D3.3 [2], which describes a
generic methodology for the co-creation of applications in CNs and their efficient deployment and adaptation.
We will use the methodology to guide the interactions, set the ground for our cooperation and continue with the
development and improvement of the source code. Conversely, we will also give feedback to T3.1 in ways to
improve the methodology based on our experience, which will be reported in the newly introduced deliverable
D3.6 at M31.
D3.5, at the end of the project, will finalize the work of WP3, it will contain an update on the state of the open
source applications, a report on their reception from the chosen community networks and the feedback to the
methodology.

D3.4: Software Release 75

Bibliography
[1] P. Antoniadis, I. Apostol, P. Micholia, G. Klissiaris, V. Chryssos, and M. Karaliopoulos, “Multi-

Disciplinary Methodology for Applications Design for CNs, including Design Guidelines and Adoption
Facilitation (v1),” netCommons Deliverable D3.1, Jan. 2017. http://netcommons.eu/?q=content/multi-
disciplinary-methodology-applications-design-cns-including-design-guidelines-and

[2] P. Antoniadis, I. Apostol, and A. Papageorgiou, “Multi-Disciplinary Methodology for Applications
Design for CNs, including Design Guidelines and Adoption Facilitation (v2),” netCommons Deliverable
D3.3, Mar. 2018. https://www.netcommons.eu/?q=content/multi-disciplinary-methodology-applications-
design-cns-including-design-guidelines-and-0

[3] N. Facchi, F. Freitag, L. Maccari, P. Micholia, and F. Zanini, “Release of All Open Source Software for all
Applications (v1),” netCommons Deliverable D3.2, Dec. 2016. http://netcommons.eu/?q=content/release-
new-open-source-software-all-applications-v1

[4] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing and its role in the internet of things,”
in Proceedings of the First Edition of the MCC Workshop on Mobile Cloud Computing, ser. MCC ’12.
New York, NY, USA: ACM, 2012, pp. 13–16. http://doi.acm.org/10.1145/2342509.2342513

[5] B. Varghese, N. Wang, D. S. Nikolopoulos, and R. Buyya, “Feasibility of fog computing,” CoRR, vol.
abs/1701.05451, 2017. http://arxiv.org/abs/1701.05451

[6] W. Shi and S. Dustdar, “The promise of edge computing,” Computer, vol. 49, no. 5, pp. 78–81, May 2016.
[7] R. Baig, R. Pueyo, F. Freitag, and L. Navarro, “On edge microclouds to provide local container-based

services,” in Global Information Infrastructure and Networking Symposium (GIIS), 2017.
[8] M. R. Casters, R. Bouman, and J. van. Dongen, Pentaho Kettle Solutions: Building Open Source ETL

Solutions with Pentaho Data Integration. Wiley, 2010.
[9] N. Apolónia, F. Freitag, L. Navarro, S. Girdzijauskas, and V. Vlassov, “Gossip-based service monitoring

platform for wireless edge cloud computing,” in 2017 IEEE 14th International Conference on Networking,
Sensing and Control (ICNSC), May 2017, pp. 789–794.

[10] B. Lantz et al., “A network in a laptop: rapid prototyping for software-defined networks,” in Proceedings
of the 9th ACM SIGCOMM Workshop on Hot Topics in Networks. ACM, 2010, p. 19.

[11] R. R. Fontes et al., “Mininet-wifi: Emulating software-defined wireless networks,” in Network and Service
Management (CNSM), 2015 11th International Conference on. IEEE, 2015, pp. 384–389.

[12] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag, and L. Veiga, “Practical service placement
approach for microservices architecture,” in 2017 17th IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing (CCGRID), May 2017, pp. 401–410.

[13] S. Traverso, L. Abeni, R. Birke, C. Kiraly, E. Leonardi, R. Lo Cigno, and M. Mellia, “Neighborhood
Filtering Strategies for Overlay Construction in P2P-TV Systems: Design and Experimental
Comparison,” IEEE/ACM Transactions on Networking, vol. 23, no. 3, pp. 741–754, Jun. 2015.
http://dx.doi.org/10.1109/TNET.2014.2307157

[14] L. Baldesi, L. Maccari, and R. Lo Cigno, “Optimized Cooperative Streaming in Wireless Mesh
Networks,” in In Proc. of The 15th IFIP Networking Conference (NETWORKING), May 2016.
http://www.sciencedirect.com/science/article/pii/S1574119216303443

[15] L. Maccari, N. Facchi, L. Baldesi, and R. Lo Cigno, “Optimized P2P Streaming for Wireless distributed

D3.4: Software Release 76

http://netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and
http://netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and
https://www.netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and-0
https://www.netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and-0
http://netcommons.eu/?q=content/release-new-open-source-software-all-applications-v1
http://netcommons.eu/?q=content/release-new-open-source-software-all-applications-v1
http://doi.acm.org/10.1145/2342509.2342513
http://arxiv.org/abs/1701.05451
http://dx.doi.org/10.1109/TNET.2014.2307157
http://www.sciencedirect.com/science/article/pii/S1574119216303443

Bibliography

Networks,” Journal of Pervasive and Mobile Computing,Volume 42, pages 335-350, Dec. 2017, Elsevier.
https://www.sciencedirect.com/science/article/pii/S1574119216303443

[16] “Stirling Number of the Second Kind,” http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html.
[17] T. Palit, Y. Shen, and M. Ferdman, “Demystifying cloud benchmarking,” in 2016 IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS), April 2016, pp. 122–132.
[18] A. Sathiaseelan and J. Crowcroft, “Lcd-net: lowest cost denominator networking,” ACM SIGCOMM

Computer Communication Review, vol. 43, no. 2, pp. 52–57, 2013.
[19] A. Sathiaseelan, J. Crowcroft, M. Goulden, C. Greiffenhagen, R. Mortier, G. Fairhurst, and D. McAuley,

“Paws: Public access wifi service,” in The Third Digital Economy All-hands Meeting: Digital Engagement
(DE), Aberdeen, Scotland/United Kingdom, 2012.

[20] Fon. (2016) Fon corporation. [Online; accessed 10-February-2017]. https://fon.com
[21] A. Abujoda, D. Dietrich, P. Papadimitriou, and A. Sathiaseelan, “Software-defined wireless mesh net-

works for internet access sharing,” Computer Networks, vol. 93, Part 2, pp. 359–372, 2015.
[22] E. Dimogerontakis, R. Meseguer, and L. Navarro, “Internet Access for All: Assessing a Crowdsourced

Web Proxy Service in a Community Network,” in Passive and Active Measurement Conference (PAM),
LNCS, vol. 10176, 2017, Springer.

[23] E. Dimogerontakis, J. Neto, R. Meseguer, and L. Navarro, “Client-Side Routing-Agnostic
Gateway Selection for heterogeneous Wireless Mesh Networks,” in IFIP/IEEE International
Symposium on Integrated Network and Service Management, Lisbon, Portugal, May 8-12, 2017.
http://ieeexplore.ieee.org/abstract/document/7987301/

[24] E. Dimogerontakis, R. Meseguer, L. Navarro, S. Ochoa, and L. Veiga, “Design trade-offs
of crowdsourced web access in community networks,” in IEEE 21st International Conference
on Computer Supported Cooperative Work in Design, Wellington, NZ, April 26–28, 2017.
http://ieeexplore.ieee.org/document/8066665/

[25] ——, “Community Sharing of Spare Network Capacity,” in IEEE International Conference on
Networking, Sensing and Control, Calabria, Italy, May 16-18, 2017. http://ieeexplore.ieee.org/document/
8000108/

[26] L. Abeni, C. Kiraly, A. Russo, M. Biazzini, and R. Lo Cigno, “Design and Implementation of a Generic
Library for P2P Streaming,” in ACM Workshop on Advanced Video Streaming Techniques for Peer-to-peer
Networks and Social Networking, Oct. 29, 2010, pp. 43–48. http://doi.acm.org/10.1145/1877891.1877902

[27] R. Birke, E. Leonardi, M. Mellia, A. Bakay, T. Szemethy, C. Kiraly, R. Lo Cigno, F. Mathieu, L. Mus-
cariello, S. Niccolini, J. Seedorf, and G. Tropea, “Architecture of a network-aware p2p-tv application: the
napa-wine approach,” IEEE Communications Magazine, vol. 49, no. 6, pp. 154–163, June 2011.

[28] A. Russo and R. Lo Cigno, “Delay-Aware Push/Pull Protocols for Live Video Streaming in P2P Systems,”
in 2010 IEEE International Conference on Communications, May May 2010, pp. 1–5.

[29] C. Kiraly, L. Abeni, and R. Lo Cigno, “Effects of P2P Streaming on Video Quality,” in 2010 IEEE
International Conference on Communications, May May 2010, pp. 1–5.

[30] M. Handley, V. Jacobson, and C. Perkins, “Sdp: Session description protocol,” RFC 4566 (Proposed
Standard), Internet Engineering Task Force, Tech. Rep. 4566, jul 2006.

[31] L. Baldesi, L. Maccari, and R. Lo Cigno, “On the Use of Eigenvector Centrality for Cooperative
Streaming,” IEEE Communications Letters, Vol. 21, Issue. 9, pages 1953–1956,, Dec. 2017.
http://ieeexplore.ieee.org/document/7942071/

D3.4: Software Release 77

https://www.sciencedirect.com/science/article/pii/S1574119216303443
https://fon.com
http://ieeexplore.ieee.org/abstract/document/7987301/
http://ieeexplore.ieee.org/document/8066665/
http://ieeexplore.ieee.org/document/8000108/
http://ieeexplore.ieee.org/document/8000108/
http://doi.acm.org/10.1145/1877891.1877902
http://ieeexplore.ieee.org/document/7942071/

netCommons
Network Infrastructure as Commons

Release of New Open Source Software for All Ap-
plications

Deliverable Number D3.4
Version 1.0

March 2, 2018

This work is licensed under a Creative Commons “Attribution-
ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

	1 Introduction
	1.1 WP3 in the context of netCommons
	1.2 Current State and Future Steps

	2 Update on the Cloudy Distribution
	2.1 The proposition of edge microclouds
	2.2 Docker compose-based service provision in microclouds
	2.2.1 Software Integration
	2.2.2 Services from the IoT Domain and practical experimentation

	2.3 New applications enabled by Docker
	2.3.1 Home Assistant
	2.3.2 OwnCloud and NextCloud
	2.3.3 Etherpad

	2.4 Service monitoring
	2.4.1 Motivation and goals
	2.4.2 Monitoring platform for edge clouds
	2.4.3 Experimental analysis
	2.4.4 Monitoring system prototype
	2.4.5 Final insight

	2.5 Service placement
	2.5.1 Goals and model
	2.5.2 Service placement proposal
	2.5.3 Evaluation and results
	2.5.4 Final insight

	2.6 Decentralized access to the Internet: proxies and Internet gateways
	2.7 Takeaway
	2.8 List of publications related to T3.2

	3 Developments on PeerStreamer
	3.1 Integration of PeerStreamer into Cloudy
	3.1.1 Introducing PS-ng
	3.1.2 Internals of PS-ng
	3.1.3 Integration with Serf

	3.2 The PS-ng web interface
	3.2.1 PS-ng with VLC plugin
	3.2.2 HTML5 Solution
	3.2.3 WebRTC Solution
	3.2.3.1 Details of the ReST Interface

	3.3 Support for Bi-Directional streams in PeerStreamer
	3.3.1 Acquiring the Video with WebRTC
	3.3.2 Distributing SDP Files
	3.3.3 The modified Web Interface

	3.4 New Research results on P2P Video streaming on CN
	3.4.1 Optimized P2P Streaming for Wireless distributed Networks
	3.4.2 On the Use of Eigenvector Centrality for Cooperative Streaming

	4 Update on CommonTasker
	4.1 The reshaped CommonTasker and a longer-term case study for its use
	4.2 Application requirements
	4.2.1 Data collection and logging requirements (RDC)
	4.2.2 Information-feeding requirements (RI)
	4.2.3 Gamification requirements (RG)
	4.2.4 Social networking requirements (RS
	4.2.5 Data management and privacy control requirements (RP)
	4.2.6 User profiling and authentication requirements (RPR)
	4.2.7 User interface & graphic design (RU)

	4.3 Application architecture and design
	4.3.1 The mobile UI
	4.3.1.1 The splash page
	4.3.1.2 The Login Page
	4.3.1.3 The user home page
	4.3.1.4 The calendar module
	4.3.1.5 The scoreboard module
	4.3.1.6 The export module converting posts to PDF files
	4.3.1.7 The notes-taking plug-in
	4.3.1.8 The community module
	4.3.1.9 The user profile pages

	4.3.2 Backend server
	4.3.2.1 Authentication
	4.3.2.2 Real-time Database
	4.3.2.3 Storage
	4.3.2.4 Some forward-thinking about the backend

	4.4 Roadmap for the last year of the project
	4.4.1 Remaining development work
	4.4.2 Remaining development work and distribution of the app to the local community

	5 Conclusions and Year 3 Work
	Bibliography

