
netCommons
Network Infrastructure as Commons

Report on the Results of the Socio-Technological
Experimentation of Open Source Software

Deliverable Number D3.5
Version 1.0

January 24, 2019

Co-Funded by the Horizon 2020 programme of the European Union
Grant Number 688768

Project Acronym: netCommons
Project Full Title: Network Infrastructure as Commons.
Call: H2020-ICT-2015
Topic: ICT-10-2015
Type of Action: RIA
Grant Number: 688768
Project URL: http://netcommons.eu

Editor: Leonardo Maccari, UniTN
Deliverable nature: Report (R)
Dissemination level: Public (PU)
Contractual Delivery Date: December 31st, 2018
Actual Delivery Date January 24, 2019
Number of pages: 115
Keywords: community networks, applications, open source, participatory

development, Cloudy, PeerStreamer, AppLea
Authors: Leonardo Maccari, Luca Baldesi, Renato Lo Cigno, UniTN

Felix Freitag, Leandro Navarro UPC
Merkouris Karaliopoulos, Aris Pilichos AUEB-RC

Peer review: Leonardo Maccari, Leandro Navarro,
Merkouris Karaliopoulos, Renato Lo Cigno

History of Revisions

Rev. Date Author Description

v0.1 5/12/2018 Leonardo Maccari First draft
v0.2 17/12/2018 Leandro Navarro, Felix Freitag Cloudy related chapter, general updates
v0.3 20/12/2018 Leonardo Maccari PeerStreamer-ng, review of Cloudy
v0.4 27/12/2018 Leonardo Maccari letters, conclusions and intro
v0.5 28/12/2018 Leandro Navarro, Felix Freitag Reworked first part of Cloudy chapter
v0.6 31/12/2018 Merkouris Karaliopoulos, Aris

Pilichos
Added section 4.1 and first part of screenshots
for the AppLea chapter

v0.7 4/1/2018 Merkouris Karaliopoulos, Aris
Pilichos

Added section 4.2 and additional screenshots

v0.8 11/1/2018 Merkouris Karaliopoulos, Aris
Pilichos

Added section 4.3 and final round of screen-
shots, reworked section 4.2

v0.9 14/1/2019 Leonardo Maccari review of sect. 4
v1.0 22/1/2019 Renato Lo Cigno Final proof reading and harmonization with

other deliverables

D3.5: Software Experimentation 2

http://netcommons.eu

Executive summary

This report is the follow-up of D3.2 and D3.4 in which we documented the state of the software development
carried on in netCommons at the end of M12 [1] and at the end of M24 [2]. In these reports we introduced
and described the advances in the Cloudy, PeerStreamer and the CommonTasker application (now re-named
AppLea), that are the open source applications being developed in netCommons. While the first two were
started in previous EU-financed projects (the CLOMMUNITY and NAPA-WINE FP7 projects) the latter is a
new application developed from scratch in netCommons. This deliverable reports on the development of these
platforms in the third year of the project, in which we tested them with the help of some selected communities,
and continued their development. It also gives additional feedback to the methodology described in T3.1.
As such, this deliverable describes the lessons learned from the usage or our open source software in the
communities, the feedback we received and how it helped the software to become fully usable.

Summary of Development The Cloudy platform was further expanded to support the IoT world. Chapter 2
reports on this new direction we opened in order to make Cloudy even more appealing to the users of Guifi
Community Network. Furthermore, Cloudy was at the center of the development of two new technologies,
Information-Centric Networking (ICN) and Blockchains. In the first case, the Umobile project1 used Cloudy as
the base platform to test, for the first time the use of ICN on mesh networks. We report on these advances and
current ongoing publications. In the second case, UPC was involved into the experimentation of Blockchain for
mesh networks by the AmmbrTech start-up, which is a recently created company investing in Blockchain-based
mesh networks.
The PeerStreamer-ng application was completed with PartyHub, a component to realize many-to-many video-
conference. PartyHub is now included in the main tree of PeerStreamer-ng and it can be used both on-line and
within community networks. We have tested PeerStreamer-ng and PartyHub in several occasions and it was
used in two groups of the ninux community network.
Finally, AppLea has been completed. The app was largely modified compared to the initial design, thanks to
constant interaction and feedback received from the members of Sarantaporo-gr community network. It is now
stably used by a group of farmers in the Sarantaporo-gr community network.
Furthermore, additional developments emerged in the interaction with CNs (ninux in particular) that netCom-
mons followed and nurtured, fostering dissemination and impact of the project.
As for D3.2 and D3.4 all the source code released during the project is available in our Github organization2

Summary of Adoption Our initial goals for WP3 was to have at least two community networks to test and
adopt our software. In this deliverable, (together with D3.6 for the part dealing with the participatory method-
ology) we describe how we were able to involve four community networks from three countries to adopt, use
and co-develop our software. We show that not only we had our open source software used by a community of
users, but also how the influence of the project and the methodologies we proposed were of interest outside of
these specific communities and outside the world of community networks.

Update on the Multi-Disciplinary Methodology for Applications Design Albeit the work of T3.1 officially
ended with D3.6, NetHood continued the development of the methodology to produce a stand-alone booklet
with the latest version of the methodology. The booklet is an investment we deemed necessary to produce a
publication that is easy to use and read for any CN member, without the involvement of people from the project.
The current version of the booklet (which by nature will change and update in the future) is included in this
deliverable.

1UMOBILE: H2020 #645124 project: https://cordis.europa.eu/project/rcn/194285/factsheet/en, http://www.umobile-project.eu/
2See https://github.com/netcommonseu with specific reference to the PeerStreamer-ng, Cloudy-netCommons and AppLea reposito-

ries.

D3.5: Software Experimentation 3

https://cordis.europa.eu/project/rcn/194285/factsheet/en
http://www.umobile-project.eu/
https://github.com/netcommonseu

Contents
1. Introduction 10

2. Update on the Cloudy community cloud distribution 12
2.1. Positioning the evolution of Cloudy in the context of guifi.net and beyond 12
2.2. Results in 2018 . 13
2.3. Collaborative informed gateway selection . 15

2.3.1. Design of the gateway selection algorithms . 16
2.3.2. Summary and future work . 17

2.4. Towards IoT Service Deployments on Edge Community Network Microclouds 17
2.5. Lightweight service deployment in micro-clouds . 18
2.6. PiCasso: service deployment in information-centric networks and services 19

2.6.1. Key Observations . 20
2.6.2. PiCasso: Multi-Access Lightweight Edge Computing Platform 21
2.6.3. Architecture of PiCasso . 22
2.6.4. Discussion and implications for Cloudy . 24

2.7. Exploring blockchain for economically sustainable wireless mesh networks 24
2.7.1. The context and analysis . 25
2.7.2. Blockchain: The underpinning Technology . 26
2.7.3. Permissionless vs Permissioned, Public vs Private . 26
2.7.4. Discussion . 27
2.7.5. Conclusion . 28

2.8. Exploring the Collaborative Governance of Decentralized Edge Microclouds with Blockchain-
based Distributed Ledgers . 28
2.8.1. Architectural design and implementation options . 28
2.8.2. The multi-agent approach to enhance the governance of Cloudy microclouds 30
2.8.3. Concluding remarks on microclouds . 30

2.9. Comments from members of the Cloudy community . 30

3. Developments and Use of the PeerStreamer Application 33
3.1. Dissemination and Feedback . 34

3.1.1. PS-ng Communication and Diffusion . 34
3.1.2. Tests and Feedback Received . 35

3.1.2.1. The Battle of The Mesh Event . 35
3.1.2.2. Sarantaporo.gr . 36
3.1.2.3. Developments as a Consequence of User Feedback 37

3.2. PartyHub . 40
3.3. Experimenting On Ninux . 42

3.3.1. The PeerStreamer-ng Architecture for ninux . 43
3.4. Additional activities: the Turnantenna, and the CN Graph Generator 46

3.4.1. The Turnantenna . 46
3.4.2. The Graph Generator . 46

4. From CommonTasker to AppLea: experimentation and development activities 50
4.1. From laboratory experimentation to field experimentation . 50

D3.5: Software Experimentation 4

4.2. Evolution of the AppLea functionality through community feedback 51
4.2.1. The splash page . 51
4.2.2. The Login Page . 53
4.2.3. The user profile pages . 53
4.2.4. The user homepage . 55
4.2.5. The calendar module . 56
4.2.6. The weather module . 56
4.2.7. Log history – processing capabilities . 57
4.2.8. Farming activity statistics . 58

4.3. Iterating on the app impact . 59
4.3.1. Interest of the local community in the app . 60
4.3.2. The app as an enabler of CN synergies . 62

4.4. A final note: open source backend alternatives to Firebase . 62

5. The Participatory Methodology Booklet 64

6. Conclusions 65

Bibliography 66

A. Participatory Design Methodology Booklet 70

D3.5: Software Experimentation 5

List of Figures
2.1. Layered structure of the proposed algorithm . 17
2.2. The overview of the PiCasso platform. Main components of Picasso platforms are shown:

Service Controller (SC), Service Execution Gateway (SEG) and Forwarding Node (FN). . . . 21
2.3. PiCasso’s function blocks. 23
2.4. PiCasso monitoring dashboard . 23
2.5. Technical layers for the collaborative governance of edge microclouds. 29

3.1. The new website (left) together with the old, non scalable website (left). 34
3.2. The network topology tested at the Battle of The Mesh Conference. 36
3.4. The channel creation interface with the optional video quality and video sharing radio button.ad 39
3.5. PartyHub landing page. Users are required to pick a “conference room” and a nickname. . . . 40
3.6. PartyHub conferencing room “netCommons” with three active users. 40
3.7. PartyHub videoconference join call diagram. 41
3.8. PartyHub periodic task call diagram. 42
3.9. Two centralized streaming models. 43
3.10. The PeerStreamer-ng configuration used in ninux; the presence of a public server allows two

islands to easily share the same session with minimal resources. 44
3.11. Various phases of development of the Turnantenna project. 47
3.12. A potential network generated in the area of Florence (Italy), with details on a specific link. . . 48

4.1. Plan for experimentation with the app, in-lab (alpha testing) and field (beta testing). 51
4.2. The revised AppLea splash page. 52
4.3. Additional pages with information about the app, attached to a menu button on the splash page. 52
4.4. Login page – authentication options. 53
4.5. The revised interface for adding fields to a user’s profile. 54
4.6. Profile page – intensity of tractor use and sharing configuration per type of farming activity log. 54
4.7. The revised AppLea app homepage, featuring a large calendar as asked by beta testers. 55
4.8. Log entry forms for different farming activities included in the calendar module. 56
4.9. Weather module in AppLea. 57
4.10. Applying filters to the log history. 58
4.11. Exporting a subset of posts, after filtering, as pdf files. 58
4.12. Example illustrations produced by the app. 59
4.13. Telegram groups used as channels of remote interaction with the alpha- and beta-testing team. 60
4.14. Distributions of user per country. 61
4.15. Information about use of the AppLea, as extracted from the analytics of the Firebase backend:

active app users, activity, and geographic distribution of users. 61

D3.5: Software Experimentation 6

List of Tables
4.1. Pricing options offered by competing backend platforms. 63

D3.5: Software Experimentation 7

List of Acronyms
API Application Programming Interface
BASP Bandwidth and Availability-aware Service Placement
CA Certification Authority
CDN Content Distribution Network
CN Community Network
CMN Community Mesh Network
CPU Central Processing Unit
DNS Domain Name System
DTN Delay Tolerant Network
DoA Description of Activity
FOSS Free and Open Source Software
GUI Graphical User Interface
HANET HArdware and NETwork Resources
HLF Hyper-Ledger Fabric
ICN Information-Centric Networking
IoT Internet of Things
ISP Internet Service Provider
IPFS InterPlanetary File System
JSON JavaScript Object Notation
LIDAR Laser Imaging Detection and Ranging
MAS Multi-Agent System
MEC Multi-Access Edge Computing
NAT Network Address Translation
NDN Named Data Networking
NFD Name based Forwarding
PDI Pentaho Data Integration
PoA Proof of Authority
PoW Proof of Work
PS-ng PeerStreamer-NG
QMPSU Quick Mesh Project Sants and UPC
QoE Quality of Experience
QoS Quality of Service
RTP Real Time Protocol
SC Service Controller
SEG Service Execution Gateway
SME Small and medium-sized enterprise

D3.5: Software Experimentation 8

TTN The Things Network
VPN Virtual Private Network
WCN Wireless Community Networks
WebRTC Web Real Time Communications

D3.5: Software Experimentation 9

1. Introduction
WP3 is dedicated to open-source applications for CNs. As described in the Description of Activity (DoA) the
work is divided in three tasks T3.2, T3.3, and T3.4 where we develop and experiment three different open source
applications for use by CNs. The three tasks delivered the latest version of the software in M24, as reported
in D3.4 [2]. During the period M24–M36, in T3.2 we have continued our experimentation with the Cloudy
software in the Guifi network; in T3.3 and T3.4 we have continued the development of software, PeerStreamer-
NG and AppLea and we have involved communities in the testing and adoption of the proposed solutions.
Furthermore, we have produced a simplified version of the methodology studied in T3.1.
The main body of this deliverable is structured in four chapters.

Chapter 2 describes the work in T3.2. The Cloudy software has been under light maintenance in the third
year of the project, only with new areas and new mechanisms explored from feedback from the community of
users and collaborations with complementary projects and industrial interest. The work in T3.2 focuses on the
integration of other technologies into Cloudy, with the cooperation of other research projects and companies
that were interested in the use of Cloudy. Among them we mention the integration into Cloudy of technology
related to the IoT, and the first implementation of a blockchain-based solution to solve some of the open issues
in community networks.

Chapter 3 describes the work in T3.3. This task is devoted to the continuous development of the
PeerStreamer-NG (PS-ng) application and its testing and adoption in the ninux network. In this period the
application was further developed to support the video conferencing use-case, and in general to stabilize the
code base based on the feedback received by the users. We did interact, showcased and support the use of PS-ng
in four different scenarios, two public events and two communities. The first public event was the Battle of the
Mesh meeting in Berlin in May 2018, in which we deployed PS-ng in the network that the CNs deploy to test
their protocol. We tested PS-ng in such a challenging scenario and collected feedback from the participants,
that led to the development of new features. The second experimentation was held in Sarantoporo, during the
meeting we organized in July 2018. In this case we used PS-ng to stream the public conference we organized
from one Sarantaporo node to another, and again, we collected important feedback. Finally, we involved the
two ninux “islands” in the adoption of PS-ng. In the first case we used PS-ng in the island of Florence, in which
PS-ng was used to publicly stream two “hacknights” organized by the CN together with other organizations (as
documented in [3], in the second, we involved the island in Calabria to use PS-ng.

Chapter 4 describes the work in T3.4. In T3.4, we have been developing an Android app for logging and
organizing the farming activities of the Sarantaporo.gr community. The last year of the project marked the
beginning of the field experimentation with the app, named AppLea under real conditions of intended use.
The main actors in this experimentation was the beta testing team that was set up out of members of the local
community. Their feedback and ideas were the main driver behind the evolution of the app functionality in
this last year. The added functionality mainly relates to the user profiles stored in the app, its privacy control
features, the reports that can be produced out of the posts made by farmers and useful statistics that can be
shown to them regarding the use of resources in their farming activities. We also assess the impact the app has
made on the Sarantaporo.gr CN and iterate on its dependence on non-local tools (e.g., Firebase backend).

D3.5: Software Experimentation 10

1. Introduction

Chapter 5 reports a continuation of the work in T3.1. Going beyond the DoA, T3.1 produced also a
simplified version of the participatory design methodology in a published booklet, which we include in the
appendix of this document and briefly describe in Chapter 5.

D3.5: Software Experimentation 11

2. Update on the Cloudy community cloud distribution
This chapter describes the evolution of the Cloudy community cloud distribution following the feedback and
needs raised from interaction with the guifi.net community network and other interested parties and initiatives.
Although we describe in more detail the work in the last year, we provide first a perspective of the evolution
of Cloudy to clarify the context and starting point. As the development effort for Cloudy in netCommons was
essentially finished at M24, most of the work presented derives from analysis of scenarios and research in
application contexts, new enablers, as well as in possible future extensions of the platform.

2.1. Positioning the evolution of Cloudy in the context of guifi.net and beyond

After an initial development supported by the Clommunity project1, Cloudy started its deployment in guifi.net
in 2015. The number of Cloudy instances raised quickly to around some tenths of deployed nodes (around 50) as
described in more detail in Section 6 of [4]. The number of instances (operational servers) we observed during
the last years is quite steady and has not changed significantly2, and a progressive replacement of the low cost
devices being used. Typically we can observe (from the node monitoring system) between thirty to fifty nodes,
as the discovery protocol is gossip based and network delays or partitions can affect the group membership view.
Cloudy nodes were and are typically installed by the most active guifi.net members3, possibly a number that is
not fluctuating much in the community, and not by those community network members which use the guifi.net
network just to access the Internet. Without a dedicated development and support team the maintenance effort
is manageable by the community of developers, researchers and users. Without logs to quantify new device
installations, we estimate that at least 1/3 of the current Cloudy nodes where installed since the beginning
of netCommons. We include in Sec. 2.9 questions and replies from a few Cloudy users at end of 2018, that
volunteered to provide feedback about their own experience. They belong to a rural (Ribagorza valley) and a
urban (Barcelona) community, part of the guifi.net CN.
In the early version of Cloudy, a fixed set of predefined services were given. Each service had a user-friendly
installation option. These services could be classified into two groups, namely services for network manage-
ment and applications for users. We observed that the network management service had some adoption by the
users, who appreciated the much easier installation of guifi.net internal DNS servers and network monitoring
servers which Cloudy provided. The predefined user-oriented applications, however, had little success with
regards to take-up. Applications included file synchronization, decentralized storage and video-streaming, all
based on reasonably consolidated third party open-source software integrated in Cloudy.
We extended Cloudy during 2016 and 2017 with container-based deployment mechanisms, taking advantage of
the consolidation of Docker and the increasing number of tools to deploy applications by container instances.
The shift from predefined applications to enabling new additions with containers made any application available
as Docker image with a web user interface deployable in Cloudy. As a consequence, the scope of applications
which could be run in Cloudy became much larger. The consolidation of the docker-compose tool was picked
up for the Cloudy development and we integrated in 2017 into Cloudy. Compared to deploying with just
Docker, the compose functionality makes it more easy to deploy complex applications consisting of several
interrelated Docker images. Overall, during 2016 and 2017 more features were added to Cloudy which kept

1Clommunity: A Community networking Cloud in a box, 2013-2015, http://clommunity-project.eu/
2As the number of participants in the support mailing list, quite even, with new participants compensating those those leaving or

becoming silent.
3Willing to experiment and run guifi.net services like local Domain Name System (DNS), web proxies offering free Internet/Web

access, network monitoring servers, or application-oriented experimental applications for messaging, file sharing, etc.

D3.5: Software Experimentation 12

http://clommunity-project.eu/

2. Update on the Cloudy community cloud distribution

Cloudy up to date and ready with regards to the overall adoption of container technology for the deployment of
applications in cloud infrastructures. In 2018 no new features were released in the public distribution, being in
a maintenance phase.
The feasibility analysis of community clouds in general and Cloudy in particular shows the value of the scenario
of ‘platform commons’, but also its difficulties. The complexity of development, integration and maintenance
of a community cloud platform is another major difficulty and risk. As we described in [4], software complexity
requires a committed and balanced community of developers, maintainers, and users. The guifi.net experience,
our experience and the experience of other CNs shows the need for a combination of volunteer and professional
developers. In fact, it is clarifying to realize that the community of developers involved directly or indirectly
in the development of Cloudy components is much larger (at least two orders of magnitude4) larger than the
current user community: just the Debian community, the basis for Cloudy, involved 1625 people and 19 teams
in 20185, or the Docker community has more than 3,000 contributors, and Docker Inc. has more than 250
employees. To this end, it is necessary to develop a value chain that ensures a minimum revenue stream to pay
the professional developers and volunteers.
Sustainability of a volunteer computing infrastructure that goes beyond hobbyist usage has been demonstrated
before by some cases, but specific conditions applied that made it successful. Peer-to-Peer file sharing was
taken up by millions of users by the attraction of readily accessible content. Volunteer computing projects
which support scientific research gathered large pools of resources from contributors.
guifi.net created the compensation system in order to bring in cost sharing and regulate commercial activity
in the volunteer-contributed communication network. As a consequence, volunteers and commercial service
providers co-exist in the guifi.net ecosystem, and help to make the infrastructure sustainable and scalable,
further developed and discussed in [5].
The lessons of the success of the economic compensation system made us focus, in 2017 and 2018, on exploring
means which could make Cloudy sustainable, described and justified in detail in [4], which lead to some of the
results described in Sec. 2.2.

2.2. Results in 2018

The core of the work related to Cloudy in the third year of netCommons relates to improvements beyond
the implementation of the M24 software release in D3.3 [6], and the detailed definition of the governance,
implementation and evaluation in D1.4 [7], and the corresponding journal publication [4].
Beyond that, the Cloudy software has been under light maintenance in the third year of the project, but with
new areas and new mechanisms inspired by feedback from the community of users and collaborations with
complementary projects and industrial interest in Cloudy. The feedback from the community of users has come
through the discussions we had over the year in the weekly informal open lunch meetings on Wednesdays
at the UPC North campus, including a variable group of researchers, guifi.net community members, current
and former Cloudy developers, and discussions in a few of the weekly guifi-labs in Barcelona6. As part of our
participatory action research and experimentally-driven research, we have worked with the guifi.net community
to understand the needs, and co-create (design, develop, test, and evaluate) the solutions. The group discussions
were around the planning, co-design, transformation, and result phases of the action research, with a focus on
understanding the needs, the technology choices, algorithms and the software development of services that
enable certain applications or scenarios. These results however, are still not integrated in the current Cloudy
distribution. Additional non-trivial development and integration effort will be required beyond the timeline and
resources of this project. The needs, work and results obtained follow several intertwined threads described
next.

4https://en.wikipedia.org/wiki/Order of magnitude
5Debian statistics: https://wiki.debian.org/Statistics
6https://exo.cat/guifilab/

D3.5: Software Experimentation 13

https://en.wikipedia.org/wiki/Order_of_magnitude
https://wiki.debian.org/Statistics
https://exo.cat/guifilab/

2. Update on the Cloudy community cloud distribution

The first thread we followed was about new application domains for Cloudy which make the platform useful.
We selected Internet of Things (IoT) due to its business potential, social relevance and interest in the guifi.net
CN among others. This work is in the context of an ongoing collaboration with The Things Network (TTN)7

in Barcelona (between UPC, guifi.net and TTN) where we have set up a LoraWAN IoT gateway at UPC and
several sensor nodes. We demonstrated IoT application usage in Cloudy in [8] with a collaboration with Hitachi,
integrating their commercial Pentaho IoT service, summarized in Sec. 2.4.
A second thread of work was improved applications, illustrated by the need and opportunity to introduce im-
provements in Internet gateway selection for beneficiaries of this service in guifi.net. The guifi.net Foundation
and members of the guifi.net community maintain hundreds of Web/Internet gateways (web proxies) some of
them based on the Cloudy web proxy component. We have worked on improved algorithms to select the best
gateways as a way to optimize the perceived Internet-access quality and performance of the selected gateway
while minimizing the selection overhead. This is an ongoing work that will be part of a future Cloudy release,
detailed in [9] and [10], summarized in Sec. 2.3.
A third thread of work dealt with the need for coordinated deployment of services involving multiple service
instances on a community cloud. That is the result of a discussion on the fact that that some sensitive services
require multiple coordinated instances to deliver a single service. We have evaluated a lightweight service
deployment mechanism (algorithm) in micro-clouds [11], summarized in Sec. 2.5, and an evolved mechanism
for content and service deployment (PiCasso) in the context of information-centric networks and services [12]
deployed in CNs, in collaboration with the UMOBILE project8, summarized in Sec. 2.6.
The fourth thread followed the idea of guifi.net’s economic compensation system, which needs the accounting
of resource usage and contribution to compute the economic balances across participants. Thanks to a long-
standing community of interest in guifi.net around blockchain technology, with discussions around the concept
of “guificoin” and alternative currencies [13], and the availability of usable blockchain platforms became an in-
teresting candidate to build a decentralized accounting system by means of distributed ledgers. Progress in this
direction was achieved in the evaluation of blockchain platforms reported in [14], summarized in Sec. 2.7, and
by the analysis of how Cloudy can support the governance of decentralized edge microclouds with blockchain-
based distributed ledgers, elaborated in [15] and summarized in Sec. 2.8.
Combining an open source platform with industrial interest raises opportunities for replication and sustainabil-
ity to explore. The opportunity to collaborate with the AmmbrTech SRL9 company on blockchain technology
for an economic system for community resource provision became important in order to learn about suitable
tools and software, and understand how sustainability can be supported by means of a economic coordination
service. As a result, new mechanisms have been designed to coordinate data and value flows using Blockchain
technology, required for sustainable network infrastructures that can be openly expanded by participants that
can play both the role of producers and consumers of connectivity. The modelling work is described in [16].
The development of a pilot system is under development, and will be completed after the end of netCommons.
The main research themes look at consensus Proof of Authority (PoA), smart contracts (Solidity), and the in-
tegration of a network monitoring service using the Prometheus Free and Open Source Software (FOSS)10 for
traffic accounting and economic compensation. We consider this cooperation between UPC and AmmbrTech an
important outcome of netCommons and WP3 in particular. Our work on community clouds, and the adoption
from a community of users is a relevant asset for a company that wants to develop wireless routers for large-
scale mesh networks adoption. The challenges to solve are the ones known in the literature and the ones we
studied in netCommons, such as the scalability of the network, the distribution of some still centralized systems
(accounting, IP addressing, authentication) and the governance of a large distributed community. Blockchains

7TTN in Barcelona: https://www.thethingsnetwork.org/community/barcelona/
8UMOBILE: H2020 #645124 project: https://cordis.europa.eu/project/rcn/194285/factsheet/en, http://www.umobile-project.eu/
9A research collaboration agreement between UPC and AmmbrTech / Ammbr Research Labs was signed and funded by AmmbrTech

for the period of February-December 2018. The results will be applied in a new contract for 2019 to run pilot experiments in
different communities around the world.

10See https://prometheus.io/.

D3.5: Software Experimentation 14

https://www.thethingsnetwork.org/community/barcelona/
https://cordis.europa.eu/project/rcn/194285/factsheet/en
http://www.umobile-project.eu/
https://prometheus.io/

2. Update on the Cloudy community cloud distribution

have been proposed to solve some of these problems by netCommons members [17, 18] and the fact that a
private company invested funds to start a cooperation with one of the netCommons partners is a clear proof of
the impact of the project.
We considered to evaluate and redesign the user interface of Cloudy in 2018 applying the netCommons collab-
orative design methodology presented in D3.6 [3]; however, this task evolved slowly in the discussions with the
community and got postponed beyond the end of netCommons to be able to include the results of other activities
and ideas that the community is pursuing, including the idea of a mobile application that would complement
the current Cloudy servers.
On the edge computing platform side, by the end of 2018, we can observe the appearance of open source edge
computing platforms, as exemplified by Cloudy since 2015, such as EdgeXFoundry11 developed under the
umbrella of the Linux Foundation, which may become very strong in the industrial domain. We observe also
the need for 5G edge computing infrastructures, where the foreseen Multi-Access Edge Computing (MEC)
deployments by network operators will be insufficient to cover the demands of applications. The need for
an edge cloud computing layer close to the end user than the MEC infrastructure, could be addressed by
Cloudy. Interoperation at the resource and service layer with diverse actors, however, will need accounting
and governance services in Cloudy, for which we expect that our work on blockchain has brought us closer to
integrate this technology into Cloudy.
In the following sections we elaborate and summarize details about the specific areas of development in 2018
with results already introduced above.

2.3. Collaborative informed gateway selection

Thanks also to the netCommons legal work, Wireless Community Networks (WCN) are gaining more pop-
ularity for self-provision of Internet access in underserved regions [19]. The connectivity to the Internet is
arranged through several gateway nodes among the client nodes in a large-scale wireless network. One of the
main challenges is to fairly distribute the available Internet bandwidth among client nodes while maintaining
a good overall performance perception at the same time. In guifi.net there are about 12,000 nodes using 394
active web proxy nodes (January 2018) acting as Internet gateways [20, 21].
There are several forms of middleboxes that can act as Internet gateways, ranging from simple IP routers to
devices requiring application intelligence [22], implementing firewall or network address translation services,
or HTTP connection pooling and content caching in web proxies. In guifi.net web proxies (usually based on
the Squid implementation) have been the preferred way for participants to share Internet access with other
guifi.net participants, being able to control the maximum network throughput offered or simply share their
spare Internet capacity, reuse public content through content caches, provide some degree of privacy hiding the
address of the origin host, or enabling public entities to provide free Internet access without infringing telecom
market competence regulations. For these reasons, our work has focused on the case of web proxies as Internet
gateways.
End-users configure already known and typically nearby proxy servers, adding them manually to a web browser
extension that switches to the next proxy in the list when the current fails. The choice of a proxy in each
client is not based on performance, but only on the failure of the current choice, and thus can be considered
considered quasi-static. In contrast to that, the overall network structure is heterogeneous and the performance
of the service offered by the gateway nodes can fluctuate significantly [23]. During peak hours, the Quality
of Experience (QoE) perceived by end users varies depending on the choice of the gateway node. In order to
achieve better QoE, network nodes need to monitor periodically the service performance they achieve from the
gateway nodes.
There is a large body of work on the gateway selection problem, not only in Wireless Networks but also due

11https://www.edgexfoundry.org/

D3.5: Software Experimentation 15

https://www.edgexfoundry.org/

2. Update on the Cloudy community cloud distribution

to the rising number of Internet of Things devices that need efficient gateway selection algorithms. Most
of these works have some important limitations: despite proposing interesting solutions, they tend to fail in
considering heterogeneity, monitoring overhead, and lack practical testing in a real-world environment. We
refer the interested reader to the discussion on the state of the art in [9] and [10].
The majority of the gateway selection algorithms in the literature involve explicit measurement of all the gate-
way nodes by each client, which is not suitable for a large-scale network setting since the cost of measurement
can outweigh the benefits of gateway selection. Even though the overhead of a single measurement request
is small, in a resource-constrained, large-scale network, the overall traffic generated by measurement requests
from every node becomes a major contributor to network congestion. Additionally, many gateway selection
algorithms test all the options to select one best suitable gateway for the node. Thus, in the end, a significant
amount of measurements and message exchanges is left unused. We argue that a partial view of gateways
among different small groups of nodes would be effective in terms of reducing in-network traffic, measurement
overhead and balancing the client nodes over the gateways.
The main goal of our investigation was to provide an efficient and effective gateway selection by reducing
the gateway monitoring overhead, yet providing recent measurements to the client nodes. We argue that the
gateway selection algorithm in large heterogeneous WCN can benefit from performance estimations at a lower
cost through collaborative information sharing between network nodes.
We proposed a set of algorithms for informed gateway selection that reduces the gateway monitoring over-
head by random sampling and distribution of the information within a localized group of client nodes. We
found a good balance between explicit measurements and random sampling while keeping the information and
decisions on the clients, leaving the gateway nodes unmodified. We deployed our algorithm in an experimen-
tal heterogeneous environment and quantify its efficiency and effectiveness and the influence of collaborative
performance measurements.

2.3.1. Design of the gateway selection algorithms

We propose a client-side informed gateway selection algorithm where network nodes collaborate with closely
located neighbor clients to sense the performance of the gateways. Each node keeps a table, called gateway
performance table, where it stores the results of its own gateway performance measurements for the different
gateways as well as the gateway measurement results obtained from its neighbor nodes. The main objective of
collaborative sensing is to reduce the in-network traffic and to increase the awareness about gateway nodes at
each client node.
Parts of the algorithm can be replaced (for example, we propose two different procedures to select the best
gateway). We have therefore structured our approach into different components that are organized in three
layers (see Figure 2.1): The bottom layer provides the performance sensing, that is the measurement of the
gateway performance and the identification of close neighbors to collaborate with; the middle layer is in charge
of the actual collaboration between network nodes, i.e., the exchange of measurement results; the top layer
selects one gateway from the table of measured gateways.
All components of the algorithm run on the client side, i.e. on the network nodes and their execution can be
roughly divided into two phases, the bootstrapping phase and the periodic sensing phase. When a node is
activated it starts with an empty gateway performance table. The goal of the bootstrapping phase is, therefore,
to identify the set of close neighbors and to receive their measurement results in order to fill the node’s table.
With this initial version of the table, the node can do a first gateway selection. After this has been done,
the node enters the periodic sensing phase where it performs its own measurements (sensing) and exchanges
measurement results with neighbor nodes.

D3.5: Software Experimentation 16

2. Update on the Cloudy community cloud distribution

Figure 2.1: Layered structure of the proposed algorithm

2.3.2. Summary and future work

We looked at the informed gateway selection problem as a collaborative performance sensing within close
neighbors, drastically reducing the information to share (a reduction factor from n to 2) to achieve good QoE
at client nodes and overall fair distribution of the capacity of gateway nodes. Our selection algorithms are
simple yet effective, that is infrastructure and technology agnostic and support incremental implementation
(compatible with WCN networks that grow organically in the number of clients and number of gateways).
Experiments show that the precision estimation of our proposed algorithm is high (> 80%) throughout the
experiments, which results in high-quality Internet access for clients. By utilizing the partial knowledge of
the gateway performance information, the collaborative-best and collaborative-fair variants perform close to a
brute force algorithm.
Our collaborative sensing algorithm is applicable to other domains such as homogeneous networks, sensor
networks, IoT networks, distributed service placement, and collaborative congestion control.
Future work will explore adaptive sensing to further reduce the monitoring overhead depending on the number
of close neighbor nodes, the number of gateway nodes by adjusting the measurement period accordingly. We
plan to incorporate fault tolerance and capacity planning of gateway selection in an extended version of the
algorithm. Further, we will test the scalability of our proposed algorithm as part of a new Cloudy release, in the
real heterogeneous production network of guifi.net, with a large ratio of client nodes versus gateway nodes.

2.4. Towards IoT Service Deployments on Edge Community Network Microclouds

In a demo paper [8], we have shown that professional IoT services can be deployed on community edge mi-
croclouds. The purpose of this demonstration is to open the door for edge microclouds to serve as deployment
environment that can be used to provide commercial services.
IoT services for personal devices and smart homes are typically provided by commercial solutions which are
proprietary and closed. These services, however, give only limited power to the user on controlling the data and
enabling services, which discourages acceptance by privacy-aware users.
Cloudy offers the opportunity to run IoT service instances as Docker containers, and there are Docker-based so-

D3.5: Software Experimentation 17

2. Update on the Cloudy community cloud distribution

lutions to monitor and control network interactions with the inside and outside world12. These User-controlled
infrastructures at the network edge will give to the user the benefit from being able to choose and control the
operation of the most suitable service from different IoT service providers. Instead of running one or more pro-
prietary hardware blackboxes, an open source platform supports different service providers and the user could
choose to install only the service which satisfies her specific privacy requirements. Small and medium-sized
enterprises (SMEs) could also increase the portfolio of services and offer tailored and granular IoT services to
be run at customer premises on customer provided servers.
We conduct the demonstration on microclouds, which have been built with the Cloudy platform in the guifi.net
community network. The demonstration is conducted from the perspective of an end user, who wishes to deploy
professional IoT data management services in volunteer microclouds.
The open deployment environment is represented by the Cloudy distribution, installed by the users on their edge
devices. Through the support services of Cloudy, a new edge node is integrated into the existing community
microcloud. Cloudy foresees the deployment of applications by Docker containers.
To represent applications from professionally provided IoT services, we have chosen Hitachi Vantara’s Pentaho
open-source business intelligence (BI) suite [24], that provides comprehensive reporting, data processing, data
integration, and data mining features. The Pentaho Data Integration (PDI) client is a desktop application that
users can use to process and integrate data on their own machines, and design data workflows that they can
upload to the repository in the Pentaho Server. Users can schedule jobs to run data workflows at regular
intervals, and perform other advanced operations.
After the installation of Pentaho services in Cloudy, an end user connected to the Cloudy device finds the
Docker-based Pentaho service available in the community cloud. The Pentaho service is discoverable in the
microcloud because the provider has tagged it as a shared service. Therefore any participant of the community
cloud will be able to find it. After logging in by accessing the service through the Cloudy Web interface, the
user sees the home screen of the Pentaho service, where the user can manage stored files and scheduled jobs.
The work and demo paper [8] showed that the environment provided by Cloudy edge microclouds can also be
used to deploy professional IoT applications. This is a key achievement since it supports the advancements
of community networks to become an edge computing platform that can also be used by commercial service
providers. The demos was conducted from a publicly available instance of Cloudy in Internet, which is also
connected to the Cloudy instances within the guifi.net community network. We deployed one instance of the
Pentaho Server as a publicly accessible Docker container on two Cloudy nodes. This way the view on the
operation and management of a Cloudy node from a guifi.net user perspective was presented.

2.5. Lightweight service deployment in micro-clouds

In this line of work, which resulted in a journal paper [11], we detailed the initial evaluation reported in D3.3
on service placement mechanisms for Cloudy. The extended evaluation provides more precise results on the
improvements and limitations of the proposed service deployment mechanism Bandwidth and Availability-
aware Service Placement (BASP).
Previously, we motivated the need for bandwidth and availability-aware service placement in CN micro-cloud
infrastructures. CNs provide a perfect scenario to deploy and use community services in a participatory manner.
Earlier work done in CNs has focused on better ways to design the network to avoid hot spots and bottlenecks,
but did not relate to schemes for network-aware placement of service instances. However, as services become
more network-intensive, they can suffer from network congestion, even in well-provisioned clouds. In the case
of CN micro-clouds, network awareness is even more critical due to the limited capacity of nodes and links, and
an unpredictable network performance. Without a network-aware system for placing services, locations with

12Examples are: cAdvisor (Container Advisor) provides container users an understanding of the resource usage and performance char-
acteristics of their running containers (https://github.com/google/cadvisor), Docker Universal Control Plane https://www.docker.
com/products/docker-enterprise, among others. See for instance https://code-maze.com/top-docker-monitoring-tools/.

D3.5: Software Experimentation 18

https://github.com/google/cadvisor
https://www.docker.com/products/docker-enterprise
https://www.docker.com/products/docker-enterprise
https://code-maze.com/top-docker-monitoring-tools/

2. Update on the Cloudy community cloud distribution

poor network paths may be chosen while locations with faster, more reliable paths remain unused, resulting
ultimately in a poor user experience.
We proposed a low-complexity service placement heuristic called BASP to maximize the bandwidth allocation
when deploying CN micro-clouds (already introduced in D3.3). We presented algorithmic details, analyzed its
complexity, and performed an initial evaluation.
This year we carefully evaluated its performance with realistic settings. Our experimental results show that
the BASP consistently outperforms the currently adopted random placement in guifi.net by 2x bandwidth gain.
Moreover, as the number of services increases, the gain tends to increase accordingly.
Furthermore, we deployed our service placement algorithm in a real network segment of the Quick Mesh Project
Sants and UPC (QMPSU) network, a CN deployed in an area of Barcelona, and quantified the performance and
effects of our algorithm. We conducted our study on the case of a live video streaming service and Web 2.0
Service integrated through Cloudy distribution. Our real experimental results show that when using BASP
heuristic algorithm, the video chunk loss in the peer side is decreased, worth a 37% reduction in the overall
packet loss rate. When using the BASP with the Web 2.0 service, the client response times decreased up to
an order of magnitude, which is a significant improvement. We see an opportunity for further improvement in
looking into live service migration, i.e., the controller needs to decide which micro-cloud should perform the
computation for a particular user, with the presence of user mobility and other dynamic changes in the network.

2.6. PiCasso: service deployment in information-centric networks and services

We explored an advanced mechanism for service deployment, PiCasso, initially developed iby the UMOBILE
research project, in the context of information-centric networks and services. The concept of information-
centric networks and services was considered by the guifi.net community useful and attractive to their needs.
Further development and evaluation was done in the context of netCommons considering the software archi-
tecture of Cloudy, the results are reported in a journal paper under evaluation [12].
As participation in Community Mesh Network (CMN) networks is open, they grow organically, since new links
are created every time a host is added. Because of this, the network presents a high degree of heterogeneity with
respect to the devices and links used in the infrastructure and its management. This unique characteristic makes
CMNs different from the conventional Internet Service Provider (ISP) networks as the topology is dynamically
changing (as elaborated in D2.5 and D2.7 [25, 26]). Hence, the current software architectures and platforms
are failing to capture the dynamics of the network and therefore they fail to deliver the satisfying Quality of
Service (QoS) [20] [27].
The latest advances in lightweight virtualisation technologies (e.g., Docker, Unikernel), allows many develop-
ers to build local edge computing platform that could be used to deliver services within CMNs [28]. Despite
delivering these lightweight services within a data centre is trivial, delivering them across intermittent con-
nectivity of CMNs has a lot of challenges. As a matter of fact, most of the edge computing platforms like
Cloudy [29] still rely on the host-centric communication that binds the connection to the fixed entity (i.e., an
instance running on a single host, or several independent instances on different hosts but not coordinated).
This approach could struggle for service delivery to bring service instances to the network edge where demand
would be, as network wide connectivity might not be guaranteed. In addition to that, those platforms do not
have specific strategies on the service deployment of a set of multiple instances that a service may require in
CMN environments. This raises several questions: Which services should be delivered? When should they be
delivered? What are the suitable criteria for node selection to host the service? Is network-aware placement
enough to deliver satisfactory performance to CMN users? However, this is not trivial and requires an effective
strategy to manage the service delivery in CMNs.
On the other hand, Information-Centric Networking (ICN) has recently emerged as a potential solution for
delivering named contents. The ICN leverages in-network storage for caching, multi-party communication
for replication and interaction models that decouple senders and receivers. Instead of using IP address for

D3.5: Software Experimentation 19

https://github.com/AdL1398/PiCasso
http://www.umobile-project.eu/

2. Update on the Cloudy community cloud distribution

communication, ICN identifies a content by name and forwards a user request through name-based routing.
This decouples the content from its origin address, where the content can be delivered from any host that
currently has the content in its storage. Although ICN brings a lot of flexibility in terms of content delivery, the
current ICN implementations are rather focused on the simple static content (e.g., short message, video file). In
this regard, we argue that ICN should be extended to better support transporting at the service layer.
Our research results extend previous work [30] and [31] by focusing on two main interrelated research prob-
lems: service delivery and service deployment. The former refers to the process of delivery and instantiate a
service instance (e.g., web server) from the service provider to the edge computing node. The latter is the logic
that decides where and when to deploy the service instance regarding the service requirements, network status
and available resources (e.g., CPU load, memory). In this context, we propose PiCasso, a lightweight edge
computing platform that combines the lightweight virtualisation technologies and a novel Information-Centric
Networking (ICN) to facilitate both service delivery and service deployment in challenging environment such
as CMNs. We underpin PiCasso with Docker container-based service that can be seamlessly delivered, cached
and deployed at the network edge, taking advantage of the experience with Cloudy in netCommons. The
core of the PiCasso platform is the decision engine making a decision on where and when to deploy a ser-
vice instance to satisfy the service requirements while considering the network status and available hardware
resources. PiCasso introduces a new service abstraction layer using ICN to enable more flexibility in service
delivery. Instead of hosting services in the fixed centralised location (e.g., service repository), PiCasso allows
the edge devices obtaining service instance from the nearest caches by utilising inherent name-based routing
and in-network caching capabilities of ICN. Furthermore, PiCasso is also integrated with a service controller
and a full functional monitoring system to optimise the service deployment decision in CMNs.
Specifically, our key contributions are summarized as follows

• First, based on measurements in guifi.net, we describe the design of PiCasso, a multi-access edge comput-
ing platform which deploys QoS-sensitive services at the network edge. The decision engine of Picasso
selects the appropriate nodes for service instantiation based on constraints observed in our guifi.net mea-
surements (network bandwidth, available hardware resources and network topology). The HArdware
and NETwork Resources (HANET) decision engine algorithm uses the state of the underlying commu-
nity network to optimize the service deployment.

• Second, we utilise the ICN principles in the architecture of PiCasso in order to enable more flexibility in
the delivery of named data objects.

This was the first effort in deploying an ICN-service in a running wireless CMN such as guifi.net.

2.6.1. Key Observations

Here are some observations that we have derived from the measurements in the guifi-Sants mesh network.
A lack of smart service platforms: Despite achieving the sharing of bandwidth, guifi-Sants and guifi.net

in general, have not been able to widely extend the sharing of ubiquitous cloud services, such as private
data storage and backup, instant messaging, media sharing, social networks etc., which is a common
practice in today’s Internet through cloud computing. There have been efforts to develop and promote
different services and applications from within community networks through community network micro-
clouds [29] but without massive adoption. Further, a growing number of micro-cloud services desire
computational tasks to be located nearby users. They include needs for lower latency, a better-user
experience and efficient use of network bandwidth.

Variability in topology and change in capacity load: The guifi-Sants network is highly dynamic and
diverse due to many reasons, e.g., its community nature in an urban area; its decentralized organic growth
with extensive diversity in the technological choices for hardware, wireless media, link protocols, chan-
nels, routing protocols etc.; its mesh topology etc. The current network deployment model is based on
geographic singularities rather than QoS. The network is not scale-free. The topology is organic and

D3.5: Software Experimentation 20

2. Update on the Cloudy community cloud distribution

different with respect to conventional ISP networks. This implies that a solution (i.e., algorithm) that
works in a certain topology might not work in another one.

Non-uniform resource distribution: The resources are not uniformly distributed in the network. Wireless
links are with asymmetric quality for services (25% of the links have a deviation higher than 40%). There
is a highly skewed bandwidth, traffic and latency distribution. The symmetry of the links, an assumption
often used in the literature of wireless mesh networks, is not very realistic for our case and algorithms
(heuristics) unquestionably need to take this into account.

We built on these insights, and designed PiCasso, a low-cost edge computing platform that sits at the “extreme”
edge of the wireless network. The system was developed in the UMOBILE project, and netCommons applied it
to the Cloudy architecture and evaluated it the guifi.net network. We presented a detailed evaluation assuming
services are run in Service Execution Gateways, that are equivalent to Cloudy nodes. We show how PiCasso
achieves more efficient use of network bandwidth at low network cost in guifi-Sants network using its ICN
capabilities.

2.6.2. PiCasso: Multi-Access Lightweight Edge Computing Platform

PiCasso is implemented based on the service and access abstraction where lightweight virtualisation services
are delivered through ICN. There are several ICN implementations [32, 33, 34] that have been proposed during
the past decade. Among those implementations, Named Data Networking (NDN) is the most suitable candidate
for PiCasso as it uses a simple stateful forwarding plane to utilise the distributed in-network caching without
any control entity. Thus, we developed PiCasso that extends NDN protocol stack to support service delivery
and service deployment in CMNs.

Service Provider

AP Daemon

Docker Engine

PiCasso
Stack

Monitoring
Manager

Decision
Engine

Service
Repository

Community Mesh
Network (CMN)

Forwarding Node
(FN)

Service Execution Gateway (SEG)

HANET

End-user Devices

Service Controller
(SC)

Figure 2.2: The overview of the PiCasso platform. Main components of Picasso platforms are shown: Service
Controller (SC), Service Execution Gateway (SEG) and Forwarding Node (FN).

PiCasso is a lightweight edge platform that can rapidly deliver services to end users at the edge even though the
network connectivity is intermittent. PiCasso relies on service and access abstraction where lightweight virtu-
alisation services are delivered through the ICN. This approach that does not rely on underlying host-centric
networking model, decouples the service from it’s physical location by taking advantage of the naming and con-
tent caching that could be used to make intelligent forwarding decisions and publish/subscribe communication
primitives that allow asynchronous communications, etc.

D3.5: Software Experimentation 21

https://named-data.net/

2. Update on the Cloudy community cloud distribution

The overview of PiCasso platform is presented in Fig. 2.2. The key entity of PiCasso is referred to as Service
Controller (SC) that periodically observes (i.e., monitors) the network topology and resource consumption of
potential nodes for the service deployment. In our model, we assume that the service providers upload their
services to a service repository inside the SC before distributing to the network edge. To maintain a good
QoS and overcome the network connectivity problems, SC augments the monitoring data along with service
deployment algorithms to decide where and when to place the services. The Service Execution Gateway (SEG)
provides a virtualisation capability to run a service instance at the network edge (e.g., users home). In PiCasso,
we use Docker, a container-based virtualisation to build lightweight services and deploy across the SEGs. Each
SEG is also equipped with the access point daemon (e.g., hostapd13) to act as the point of attachment for the
end-users to access the services via WiFi connection. The Forwarding Node (FN) Fig. 2.2 is responsible for
forwarding the requests towards the original content source or nearby caches. Each FN is equipped with a
storage while dynamically caching the content chunks that flow through it. Notice that, FN does not necessary
need to execute the services.

2.6.3. Architecture of PiCasso

Current implementations of edge computing still rely on a centralized approach with large amount of traffic
spread out over the network. Streams of requests are sent from edge devices to the data center instead of
fetching the contents and services from the nearest nodes. NDN (Named Data Networking) is one of the
ICN projects which instead of using IP address for communication, directly addresses the contents by name
regardless of physical location. As a matter of fact in NDN, a piece of content or service can be stored or
cached at multiple locations. NDN uses Name based Forwarding (NFD) where the routing should be done
dynamically and effectively to fetch the desired contents of services from the best location. NDN naturally fits
with the nature of CMNs allowing nodes located far away and have intermittent connectivity to retrieve the
content or services directly from the nearest caches.
Currently, PiCasso is written in Python and implemented on top of NDN protocol stack [32] and Docker tech-
nology [35]. The main function blocks of PiCasso’s architecture are presented in Fig. 2.3 and are the following
ones.

NFD Forwarding plane sits between application and transport layer while looking at the content names
and opportunistically forwarding the requests to an appropriate network interface. It creates an ICN
overlay to support name-based routing over the network. In PiCasso, we have also extended the NDN
protocol stack by introducing a Delay Tolerant Network (DTN) face to facilitate operation in challenge
network environment like post-disaster scenario. This new face communicates with an underlying DTN
implementation that handles intermittence by encapsulating Interest and Data packets into a DTN bundle.
The details of implementation and evaluation can be found in [36]. We integrate the NFD forwarding
plane to PiCasso architecture through a Python wrapper of NDN APIs, called PyNDN14.

Service Execution runs on the SEG and has major functionality as follows: registers the SEG to the service
controller, receives push command to instantiate and terminate services dynamically regarding the deci-
sion of service deployment. This module uses docker-py15, a Python wrapper for Docker to expose the
controlling messages to Docker engine.

Monitoring Agent is responsible for measuring the current status of underlying hardware resources such as
current memory usage, CPU utilisation, CPU load etc, and reporting this data to SC. Further, it associates
with Docker engine to report the status of running containers (e.g., container names, number of running
containers) and resource consumption inside each container (e.g., CPU and memory usage).

13https://wiki.gentoo.org/wiki/Hostapd
14https://github.com/named-data/PyNDN2
15https://github.com/docker/docker-py

D3.5: Software Experimentation 22

https://wiki.gentoo.org/wiki/Hostapd
https://github.com/named-data/PyNDN2
https://github.com/docker/docker-py

2. Update on the Cloudy community cloud distribution

Decision Engine (DE) or orchestrator is responsible for selecting an appropriate SEG node for service in-
stantiation based on constraints such as available hardware resources, QoS and network topology. DE
has access to algorithm repository that can execute to make decisions on deployment of service instances.
The service deployment algorithms can be dynamically updated regarding different deployment scenarios
and service requirements.

Service Repository is a repository for storing dockerized compressed service images. Images of the ser-
vices are stored augmented with specification about service deployment in the form of JavaScript Object
Notation (JSON) format. Our implementation allows the third party service providers to upload their
service along with a deployment description augmented with specifications and QoS requirements.

Monitoring Manager periodically collects the monitoring data from each SEG and stores in the database
(Monitoring DB). It is implemented based on a time series database, called InfluxDB16. We also im-
plemented the dashboard for monitoring system using Grafana17 to visualise time series data for SEG’s
measurements and application analytics. Fig. 2.4 shows the user interface of PiCasso monitoring dash-
board.

Figure 2.3: PiCasso’s function blocks.

CPU Load Memory Usage (%)

CPU Usage (%)

Figure 2.4: PiCasso monitoring dashboard

16https://github.com/influxdata/influxdb-python
17https://grafana.com/

D3.5: Software Experimentation 23

https://github.com/influxdata/influxdb-python
https://grafana.com/

2. Update on the Cloudy community cloud distribution

2.6.4. Discussion and implications for Cloudy

Local Service Ecosystem: The PiCasso edge computing platform, combines a set of NDN tools that sim-
plify and optimize the delivery of content and services to clients, a kind of local Content Distribution Net-
work (CDN), ideally with presence of PiCasso support in the first hop, the access point. The result is that the
indirection infrastructure offloads a majority of requests, decoupling content and service from the volume of
demand. This is encouraging to CMN users to participate as active contributors, ultimately creating an ecosys-
tem of local services, that do not result in high load in servers and nearby network links. PiCasso packages
together different cloud services and content at near minimal network and server cost to end users. This would
allow Cloudy instances to coordinate and distribute services across an overlay of Cloudy servers. However, the
challenge for Picasso remains to analyze and optimize the delivery of different kinds of services when using the
ICN paradigm. For instance, one of the services to consider in our future work is live video streaming, where
content names/identifiers could be used to route requests to the right streaming servers, and take advantage of
the application semantics (streaming content) to optimize the distribution and delivery of this particular content.

Deployment benefits (transparency): The Picasso platform is easy to deploy thanks to the plug-and-play
feature of nodes. The adoption of the Picasso platform requires minimal changes in the Cloudy architecture or
network configuration since nodes are added via plug-and-play. Moreover, PiCasso nodes are able to discover
the closest node and dynamically retrieve the service image from the nearest cache. Hence, content can be
transparently delivered, cached and deployed at the network edge, at just one network hop from the client. For
that, the Serf service in Cloudy can provide that function, as it is able to sort service announcements in terms
of latency.

Traffic reduction benefits (Operator gain): Network bandwidth is crucial in guifi-Sants network since it
highly fluctuates. The use of PiCasso results in significant traffic reduction in CMNs from the benefits of in-
network caching and name-based routing. These functions assists PiCasso to reduce the service delivery cost
as well as the network traffic during the service deployment (42% reduction in terms of traffic comparing to
a host-centric solution). However, regarding the results from our deployment trial, the traffic consumption of
PiCasso is not yet optimized. As a matter of fact, NDN strictly requires the collaborative effort in order to
achieve the maximum bandwidth reduction from in-network caching capability. To summarize, in a mid-size
network (e.g., 80 nodes) as guifi-Sants it is, if we can deploy the PiCasso in critical nodes of the network, the
expected traffic reduction will be similar in percentage, but given the larger size of the network, having content
still one hop away from users results in a bigger difference in terms of intra-network traffic that reduces network
congestion, in addition to an increase of controller (server) load that grows more slowly than the size of the
network.

2.7. Exploring blockchain for economically sustainable wireless mesh networks

In this line of work we looked at mechanisms to coordinate data and value flows towards sustainability using
Blockchain technology. We look at consensus (Proof of Authority (PoA)), smart contracts, and we evaluate
blockchain platforms. A scientific paper derived from this work [14] is currently under revision for a journal
publication. This work is in collaboration with industry (AmmbrTech SRL). Decentralization, in the form mesh
networking and blockchain, two promising technologies both at the root of Community Networks (CNs) and
netCommons, are starting to be considered also in tht mainstream telecommunications industry, specially for
5G management and cost reduction. Mesh networking allows wider low cost Internet access while blockchain
enables complete transparency and accountability for investments and revenue or other forms of economic com-
pensations from sharing of network traffic, content and services. Crowdsourcing network coverage combined
with crowdfunding costs can create sustainable yet decentralized Internet access infrastructures, where every
participant can invest in resources and Internet access, to make the network economically sustainable. While

D3.5: Software Experimentation 24

2. Update on the Cloudy community cloud distribution

mesh networks and mesh routing protocols enable self-organized networks that expand organically, cryptocur-
rencies and smart contracts enable the economic coordination among network providers and consumers. We
explore and evaluate two existing blockchain software stacks, Hyper-Ledger Fabric (HLF) and Ethereum ‘geth’
with PoA, deployed in a real city-wide production mesh network, and in a centralized laboratory network. We
quantify the performance, bottlenecks and identify the current limitations and opportunities for improvement
to serve the needs of wireless mesh networks.

2.7.1. The context and analysis

One of the open challenges of peer-to-peer socio-technical structures are is trust between peers and how to en-
sure the economic sustainability of this collective effort and the balance between contribution and consumption
[37].
As an example scenario and mechanism for economic sustainability is the economic compensation system used
in guifi.net [37]. An answer to the lack of incentives to invest in network infrastructure, it was introduced in
2011 as a cost sharing mechanism. The idea of the compensation system is to balance between total resource
contribution and its consumption. The economic cost of any contribution and consumption of network resources
by each participant in a given locality are recorded. The overall result is a zero-sum computed periodically, from
monthly to quarterly, where the participants with over-consumption or negative balances have to compensate
those with over-contribution or positive balances.
Currently the above described economic compensation system is done manually: each participant declares its
costs and consumption and then the guifi.net foundation18 validates this claim by cross checking it with their
own network traffic measurement data and network inventory, according to the agreed list of standard costs. Any
disparities between these two records are flagged, clarified or raised to a conflict resolution mechanism. There
is, however, room for error or intentional false or exaggerated claims put forward by a participant, the recorded
data being tampered with, or simply mistrust among the parties. The correct application of the compensation
system is critical for the economical sustainability of the network, ensuring its proper operation, as well as
future investments. Therefore, we argue that there is a need for an automated system where participants can
trust that the consumption of resources is being accounted in a fair manner, and that these calculations and
money transfers are automated to avoid the cost, delays, errors and potential mistrust from manual accounting
and external payments.
Blockchain technologies seem to be apt to make the peer-to-peer nature of access networks trusted and eco-
nomically sustainable. A Blockchain is an immutable and distributed data storage without the provision of
retrospective mutation in data records. However, most blockchain networks are open and public (permission-
less) that encourage the users to be anonymous [38]. This implies that anyone, without revealing their true
identity, can be part of such a network and make transactions with another similarly anonymous peer of the
network.
In the perspective of community networks such as guifi.net, however, every participant who joins the network
to contribute and benefit from the infrastructure must first register its identity and the identity of the resources
that it contributes to the wider pool. This is particularly needed so that any malicious entity, such as hidden
nodes in guifi.net used by other ISPs, can be filtered out. Because of such registration process one also needs
an efficient identity mechanism on top of blockchain’s immutable record keeping. Permissioned blockhains are
part of such solutions, mostly envisioned for business networks where there is often a stringent requirement of
know your customer in addition to keeping the intra- and inter-business transactions confidential.
In this study, we extend our previous work [17] by exploring the plausibility of combining decentralized ac-
cess networks with a permissioned blockchain running on servers inside the access network, that would result
in a model for economically self-sustainable decentralized mesh access networks, guaranteeing trust among
participants, allowing economic profitability, and enabling at the same time easier Internet connectivity. We

18https://fundacio.guifi.net/Foundation

D3.5: Software Experimentation 25

https://fundacio.guifi.net/Foundation

2. Update on the Cloudy community cloud distribution

study the viability of such an approach, by evaluating two of the most prominent platforms for building local
blockchain applications. These platforms are Hyperledger Fabric (HLF)19, an industry-oriented modular, and
permissioned distributed ledger and Ethereum20, a general-purpose, business-oriented nonetheless, platform.
We deploy the Hyperledger Fabric and Ethereum platform in a centralized network in our laboratory, as well as
in a decentralized production wireless mesh network that is part of guifi.net. Our key contributions towards the
adoption of these technologies in CNs can be summarized as follows:

• First, we analyze the performance of both platforms in terms of metrics such as transaction latency,
Central Processing Unit (CPU) and memory utilization of Hyperledger Fabric and Ethereum components.
To the best of our knowledge, this is the first Hyperledger Fabric and Ethereum deployment made in a
production wireless mesh network. Our results show that both Hyperledger Fabric and geth Ethereum
network can be deployed on even resource constrained devices like Raspberry Pi 3 boards or router
boards with limited computational capability. Both the blockchain software stacks perform well without
saturation and much delays for a moderate load of up to 100 transactions fired in the network at a time. In
Hyperledger Fabric, our measurements reveal that endorsers are the bottleneck and care has to be taken
in designing endorsement policy for scaling the network. In case of Ethereum, our results show that a
there is a limit on the number of requests a node can support and can only be scaled vertically i.e., by
increasing computational capability of serving node

• Second, driven by the findings in a mesh network, we propose a placement scheme for Hyperledger
Fabric and Ethereum components that optimizes the performance of the blockchain components in mesh
networks.

2.7.2. Blockchain: The underpinning Technology

A blockchain is an append-only immutable data structure. Its most famous example is the Bitcoin cryptocur-
rency network [38]. In Bitcoin the blockchain is used to enable trust in financial transactions among different
non-trusting parties in a pure peer-to-peer fashion without the need for going through a third financial party
like e.g., a bank. Such trust is provided in terms of immutability of blockchain’s data structure. Each block in
blockchain contains information that is immutable. The immutability aspect is rendered true by including the
hash of all the contents of a block into the next block which also chains the blocks together. Tampering with
one block disturbs the contents of all the following blocks in the chain. Each block in the chain is appended
after a consensus is reached among all the peers of the network. The same version of a blockchain is stored in a
distributed manner at all the peers of the network. That is why it is sometimes referred to as distributed ledger
as well.
Two blockchain platforms are chosen for evaluation in wireless mesh networks namely Hyperledger Fabric and
Ethereum, due to their popularity and potential to be used in different applications.

2.7.3. Permissionless vs Permissioned, Public vs Private

Bitcoin [38] and Ethereum21 [39], as various other blockchains, are considered as permissionless, meaning
that anyone has “write” access to the blockchain. As a result anyone can be a part of the network, mining
and performing transactions with other parties. The consensus in such an open environment is tackled with
algorithms like the Proof of Work (PoW) protocol. Some degree of anonymity is also at the heart of such
platforms. A user (or in general an entity) usually uses the hash of its public key as its identifier as opposed to
using its real-world credentials.

19https://www.hyperledger.org/projects/fabric
20https://www.ethereum.org/
21https://ethereum.org/

D3.5: Software Experimentation 26

https://www.hyperledger.org/projects/fabric
https://www.ethereum.org/
https://ethereum.org/

2. Update on the Cloudy community cloud distribution

In the aspect of “write” openness, permissioned blockchains are in sharp contrast with public blockchains which
we discuss next. Permissioned blockchains, a concept particularly popularized by the Linux Foundation’s
Hyperledger, are usually considered for business applications. In such applications the identity of users, in
addition to trusted and immutable data storage, is also important such as the stringent requirement of know
your customers for many businesses. Hyperledger tries to leverage the best of both worlds by implementing a
cryptographic membership service on top of blockchain’s trusted, immutable, and distributed record keeping.
Another categorization can be done based on the openness of reading from the blockchain. In the case where a
blockchain exposes its data publicly it is characterized as public. On the other hand, blockchains that prohibit
access to its data are called as private.
In our study, the requirement of both users’ identity and trusted record keeping is of paramount importance
and that is why we decided to conduct our study using private permissioned blockchains. Hyperledger Fab-
ric fulfills by default these properties. On the other hand, while Ethereum is not primarily destined to serve
this purposes, it can also be used as private permissioned blockchain. Nevertheless, executing resource-full
consensus algorithms in a permissioned environment where the participants are known has no application ex-
cept experimentation with the protocols themselves. On the other hand, some protocols, like Ethereum, offer
inexpensive consensus algorithms like PoA that are ideal for a private permissioned instances.
The submitted paper [14] provides a detailed description of the evaluation setup and the evaluation results. Here
we jump to the lessons learned.

2.7.4. Discussion

Hyperledger Fabric: As we observed in our experiments, in terms of resource consumption, the endorser
nodes can prove to be a bottleneck. We believe that this bottleneck is because of the execution of an addi-
tional chaincode container at each endorsing node. In our current study we only considered one endorser
node to study the resource utilization with a simple endorsement policy encoded in the corresponding
chaincode. It might get more complicated when we consider more than one endorser, and more sophis-
ticated endorsement policies. However, as discussed in the paper, if done right it can actually improve
performance. In addition to this, the actual distribution of endorsing peers in a production network, such
as QMPSU, might also affect the network performance (both in terms of CPU utilization and transaction
latency). Therefore we advise caution when designing an endorsing policy that is also cognizant of the
underlying network infrastructure (i.e, topology, capacity, performance, etc), especially in the resource
constrained nature of CMNs. A deployment strategy and an apt endorsement policy balancing the load
on various endorsers in the network can improve the performance of the blockchain network and allow
scaling of the blockchain network without forming a bottleneck. As far as the orderers are concerned,
horizontal scaling by adding more nodes is possible, nevertheless, this would need some sort of mech-
anism for syncing between instances. For instance, it is possible to have multiple instances of ordering
service nodes all connected to a single fault tolerant service (such as the Open source Kafka application)
that would do the ordering (crash fault tolerant).

Ethereum: The results concerning Ethereum show that it can be used successfully as private permissioned
blockchain in a mesh environment, using PoA consensus. Nonetheless, there are various parameters
to be adjusted and bottlenecks that need to be discussed. Unlike HLF, in Ethereum there is no clear
horizontal scaling pattern. While having a lot of sealers could balance the incoming transactions, the
transaction throughput is largely affected by the hardware resources like CPU and memory of the nodes
who accept the transactions and less affected by the number of nodes. This, depending on the frequency
of transactions generated, can be a significant issue for mesh like environments, since the hardware used is
usually low-power/low-cost devices. Moreover, the broadcasting of the pending transactions between the
sealers can become problematic over non-stable mesh connections, especially between remote nodes, or
nodes connected with lossy links. This situation could also deteriorate by an increased number of nodes
and small blocktimes, leading to higher frequency and higher number of message exchanges between

D3.5: Software Experimentation 27

2. Update on the Cloudy community cloud distribution

the sealers. On the other hand, these effects could be moderated by utilising smart placement algorithms
like Bandwidth and Availability-aware Service Placement (BASP), which would play a significant role in
avoiding network saturation, by placing the sealers in locations that would minimise the overhead of the
blockchain. Finally, while we deploy multiple clones of one sealer, other approaches are possible, like
having multiple sealer accounts, considering that a minimum of N/2 + 1/ instances of them are always
available [40].

2.7.5. Conclusion

The missing ingredient for widespread adoption of decentralized access networks (such as community mesh
access networks) has always been the issue of economic sustainability. In this work, as explained in [14], we
tackle the issue of addressing trustworthy economic sustainability by proposing the need for an economic sub-
strate built using blockchain that can keep a record of the transactions related to the contributions (of nodes,
links, Internet gateways, maintenance), consumption of communication network’s resources as its economic
compensation in a decentralized and trusted manner. The evaluation of the Hyperledger Fabric and Ethereum
blockchain deployment in a centralized network, i.e., laboratory, and a decentralized network, i.e., in a real
production mesh network, gives an understanding of the performance, overhead, influence of the underlying
network, and limitations of the two platforms. The results show critical aspects that can be optimized in a
Hyperledger Fabric and an Ethereum deployment, in the perspective of decentralized networks, where several
components can prove to be bottlenecks and therefore put a limiting effect on the rate of economic transactions
in a mesh network. Future work will expand the evaluation to a wider range of hardware and network config-
urations considering real and synthetic transaction traces. We will also consider the influence of the execution
of non-trivial smart contracts, with a more realistic design of an endorsement policy (chaincode).

2.8. Exploring the Collaborative Governance of Decentralized Edge Microclouds with
Blockchain-based Distributed Ledgers

We explored blockchains as support service in an approach to extend microclouds with an economic model.
This work was published in [15] and is summarized in the following.
Since current attempts to build microclouds lack a collaborative governance system to operate successfully, we
discuss the opportunity to use blockchain technologies to implement key services to enable the decentralized
collaborative governance of microclouds. A multi-agent approach could further contribute to improve the
efficiency in the decision making in the collaborative governance service.

2.8.1. Architectural design and implementation options

The architectural design we present builds upon the design of Cloudy. For this we refine the available support
services and aim to extend Cloudy with collaborative governance services.
The architecture is organized into the three layers front end, governance services and support services (Fig-
ure 2.5).
The front end layer provide a user-friendly Web interface to perform operations on the community cloud node.
The Application Programming Interface (API) aims to support automated node-to-node operation. The Web
interface available in Cloudy is the main tool for the user to search and deploy services.
The governance service layer contains components for accounting of usage, resources and participation, as well
as operations which are fed from the processing of this information. For the implementation, distributed ledgers
seem to be a suitable option specifically for the following two components:

D3.5: Software Experimentation 28

2. Update on the Cloudy community cloud distribution

Figure 2.5: Technical layers for the collaborative governance of edge microclouds.

Accounting: Service usage and service contributions of community cloud members should be registered by
the system in order for the community to be able to provide feedback and potentially rewards. The requirements
for this component include that the information provided to take decisions is trusted by all participants. The
component receives input from the monitoring component (support service layer). The workload of the current
accounting data can be considered as low, since changes in the service offers in the Cloudy community clouds
are not very frequent. The computational requirements to perform this trusted accounting on a device should
be low in order for the service execution to be transparent for the owner of a node. A distributed ledger offered
by a permissioned blockchain platform could be considered as a solution to implement this component.

Trusted Global Information: The overall system status (e.g., computational resource usage, service usage
and offer) should be registered in a distributed ledger in order to provide information to the participants. This
feedback could serve for the community to take informed decisions. It could also provide information to feed
into social network channels to document usage and benefits.
With regards to the support service layer, the components are available in Cloudy, but developments in
blockchain technology may require adapting them for better integration. For instance, the identity service
could leverage ideas of Sovrin22 to improve the identity management in guifi. The storage service could be ex-
tended by the InterPlanetary File System (IPFS)23. An IPFS storage layer combined with a blockchain platform
could reduce the cost of smart contract execution on the blockchain.

22Sovrin: Identity For All https://sovrin.org/
23https://ipfs.io/

D3.5: Software Experimentation 29

https://sovrin.org/
https://ipfs.io/

2. Update on the Cloudy community cloud distribution

2.8.2. The multi-agent approach to enhance the governance of Cloudy microclouds

A community microcloud is a decentralized system with multiple owners of individual nodes which donate
resources to a common resource pool that forms the microcloud infrastructure. The collaborative governance
system aims to implement a set of services to achieve a higher attractiveness of microclouds by improved
performance. We can identify several options for contributions by a Multi-Agent System (MAS):

1. Autonomous agents acting in behalf of the Cloudy providers and users: Currently, the preferences of a
Cloudy node owner on the node operation are not delegated to a software agent. The need for multi-
tenancy of a Cloudy node, however, is already recognized and individual profiles to represent the specific
preferences of a user could be created, based on which a software agent could interact with other agents.
Research on user models and how they are integrated in multi-agent negotiation was done for instance in
[41]. It was shown that agents contributed to a higher fulfillment of the user preferences.

2. Multi-agent system to support the cloud: In [42] the potential of agents to improve cloud performance was
indicated. In microclouds, more intelligent decisions to determine resource allocations by MAS could
be very relevant. Resources in a microcloud are lightweight and heterogeneous. Therefore, appropriate
decisions are needed to achieve an efficient and performing system.

3. End-user friendliness: There are several roles in community microclouds. The actors participating in
microclouds can take roles which are similar to those of data center clouds. Node owners can act as
service providers, e.g. offer an application as SaaS. At the same time, node owners can be consumers
of services offered by other nodes. The microcloud infrastructure itself, however, does not have a single
owner and consist of those resources and services which are donated to the community. In [43] the
understanding of QoE as a multiple dimensional construct was presented. This view to manage QoE
could also be considered if applicable to the conditions of microclouds.

2.8.3. Concluding remarks on microclouds

Community microclouds currently lack a collaborative governance layer. Several services of this governance
layer could be implemented by a trusted and immutable distributed ledger, which blockchain technology can of-
fer. As such, blockchain technology is suggested as technical enabler for building the collaborative governance
services.
Operating the collaborative governance service for a distributed and decentralized computing infrastructure
at the network edge provides specific challenges, such as fulfilling the multi-tenancy purpose of the micro-
cloud nodes, to offer suitable performance on lightweight computing devices, and to be end user friendly. A
multi-agent system has the potential to improve the efficiency of the microcloud governance service by deter-
mining through interactions among agents more appropriate decisions with regards to individual and global
performance goals.

2.9. Comments from members of the Cloudy community

As a final close to this chapter we report some feedback we obtained from the community using and developing
Cloudy as volunteers and active members of the CN. These are the outcome of rather informal interaction with
users fundamentally from guiifi.net, where we shared the following questions obtaining normally an e-mail
answer.

Q1: (My role, participation) Were you, or someone in your community, involved in the development or use of
open source software realized in the netCommons project? Please briefly describe your experience.

Q2: (Adde value) What is the added value that such software brought to your community?
Q3: (Future) Are you planning to keep using the netCommons software after the end of the project?

D3.5: Software Experimentation 30

2. Update on the Cloudy community cloud distribution

Q4: (Methodology) Where you involved in the use of the participatory methodology developed in the netCom-
mons project? If yes, was it useful to the co-creation and use of applications in your community network?
If not, briefly describe why.

Q5: (Personal data) Can we include your comments to a project report? If so, nominal or anonymous?

The questions were posed both in Catalan and English, leaving people the choice of the language they prefer.
The answers we obtained were either in Catalan or in English. In case of Catalan we report the original text
in italic, and the English translation for easy of access. We received four answers, we label A to D, indicating
only the CN they come from and not the name, even if they did not object to the use of a nominative answer,
but we don’t think this adds anything to the result.

Answers

A: Ribaguifi, Santiago

Q1: Lo hemos estado utilizando en la red de guifi.net de la Ribagorza. Es la máquina que aloja nuestro
servidor de gráficas, está ubicado en el local social de Eresué.

We have been using it in the guifi.net network of the Ribagorza. It is the machine that hosts our graphics
server, it is located in the social premises in Eresué.
Además del servidor de gráficas, estuvimos probando a instalar un servicio de streaming de audio (Cher-
ryMusic). Funcionó bien, aunque lo usamos sólo un par de meses.

In addition to the graphics server, we were trying to install an audio streaming service (CherryMusic). It
worked well, although we only used it for a couple of months.

Q2: Nos ha permitido tener una máquina monitorizando la red, de bajo consumo y que gracias al Cloudy la
configuramos con unos pocos clicks.

It has allowed us to have a machine monitoring the network, with low consumption and thanks to the
Cloudy we configure it with a few clicks.

Q3: Piensas seguir utilizándolo? Sı́. Tuvimos problemas al actualizar a Debian 9, ası́ que entendemos que
habrı́a que revisar la compatibilidad con nuevas versiones. También vemos útil añadir un servicio de
VPN (tinc, openvpn...) que permita acceder de manera remota (y segura) a la máquina cuando estás
fuera de la isla de guifi.

Do you plan to continue using it? Yes. We had problems updating to Debian 9, so we understand that
compatibility with new versions should be checked. We also find it useful to add a VPN service (tinc,
openvpn . . .) that allows remote (and secure) access to the machine when you are away from the guifi
island.

Q4: This group is remote, not involved in the participatory methodology.
Q5: Sı́, puede ser de forma nominal. Como os resulte más útil/práctico.

Yes, it can be nominal. As you find it more useful/practical.

B: guifi.net, Barcelona

Q1: Per la meva part he usat els serveis de guifi i el tema de containers per poder aixecar serveis.

For my part I have used the guifi services and the topic of containers to be able to launch services.
Q2: M’ha anat ve una interficie senzilla i facil d’usar. Ha estat un plug & play. Molt senzill configurar els

serveis associats a guifi.

It was useful to have an easy to use interface. It has been a plug & play. Very easy to configure the
services associated with guifi.

Q3: Penso seguir usant-lo.

D3.5: Software Experimentation 31

2. Update on the Cloudy community cloud distribution

I intend to continue using it.
Q4: Semi-remote participant, not involved in the participatory methodology.
Q5: No reply.

C: guifi.net, Barcelona

Q1: I am part of a community in which the Cloudy software is being used to fulfill different technical net-
working needs and I’m a contributor to the Cloudy codebase.

Q2: Ease of use, by means of a simple graphical user interface, for instance to automate network monitor-
ing tasks, and the possibility to share different tools and services within the community by means of
containerized applications.

Q3: Yes, and possibly extending it by contributing new features as new needs emerge or novel tools are avail-
able.

Q4: Briefly, but yes. Communities of practice often fall into routine operation and end up approaching new
challenges with old methodologies. Assistance from external agents (e.g., academia) helps breaking up
with old, inefficient habits and dynamics, and opens new spaces for decision making and collaboration
inside the community itself.

Q5: No reply.

D: guifi.net, Barcelona

Q1: I’ve participated in the Cloudy project both as developer and user.
Q2: 1. easiness to learn about services offered by others (up-to-date services lists)

2. simplicity of installation, configuration and operation of critical applications for the operation of
our community network (guifi.net)

3. possibility to explore new applications using a single integrated framework
Q3: Yes. Cloudy fulfils many of may needs nicely, so no need to stop either using it or supporting it.
Q4: Yes. Having the guidance of experts in participatory research has helped a lot to clearly define the objec-

tives and the steps to take to achieve them. I very much appreciate the collaboration established between
the academia and the community and I hope it has been a win-win relationship. At least it has been very
positive for the community.

Q5: No reply.

D3.5: Software Experimentation 32

3. Developments and Use of the PeerStreamer
Application

This chapter describes the development of the PeerStreamer application and its video conferencing version
(which we named PartyHub), which was explicitly part of the DoA, together with “side” activities that emerged
as requests from the ninux community or from interactions with the “global” community of people involved in
CNs, as it happened also in Task 2.4 relative to monitoring instruments for CNs. Together with the development
choices we report on the dissemination process, on the efforts we did to introduce its use in the ninux community
and on the feedback we received from early adopters.
All released source code can be found in the PeerStreamer-ng, psng-pyserf and
PeerStreamer-Docker repositories in the project Github account1.
Since M24 we further extended PeerStreamer-ng to support video-conferencing in community networks. Be-
sides this implementation task, the work has focused on disseminating the platform functionalities, provide
installation and usage documentation and get in contact with community network users. The communication
with community users has exploited several means; we created an IRC channel (#peerstreamer), we gave demo
presentation during meetings (“Wireless Battle of the Mesh v11”) and the Sarantaporo public event “Building
the community in Community Networks”) and we joined community-centered Telegram groups.
Communication was not only dissemination; we have promoted and sustained a two-way communication en-
riching the development process of precious insights and feedback. Feedback have consisted of bug reports,
new feature requests and use-case suggestions.
One of the most demanded feature was the availability of a packaged version of PeerStreamer-ng for Ubun-
tu/Debian operating systems, which is now available on PeerStreamer-ng website. Debian-based systems are
quite common in community network devices and we have decided to support this packaging to further ease the
installation on those systems. With Ubuntu/Debian packaging and the Cloudy bundling community network
users can easily install and run our software.
Along with user-driven development, implementation effort between M24 and M36 has manly focused on
extending PeerStreamer-ng streaming capabilities to support video conferencing and deploying a web-based
many-to-many streaming platform, called PartyHub. While PeerStreamer-ng focuses on webcasting of events
with a one-to-many approach, PartyHub instead focuses on small groups (2-4) or people interacting with each
other. WebRTC has become the ultimate choice for our project as it has proven to be widely supported, sta-
ble and nicely integrating with our codebase. PartyHub leverages PeerStreamer-ng capabilities and WebRTC
support to provide a video conferencing tool designed and implemented for community networks.
The rest of this chapter covers our dissemination efforts and feedback received (Sec. 3.1), the development of
PartyHub (Sec. 3.2) and the use and adoption in the ninux network (Sec. 3.3).
As already mentioned we also expanded the activity beyond PeerStreamer, and Sec. 3.4 reports on two more
software development activities that were carried on in this year. Even if they were not part of the specific
objective of the work packages they are integral part of our development efforts together with the ninux CN:
the first deals with a hardware / software project promoted by one of the members of the ninux network which
we helped supervise thanks to the multi-disciplinary methodology (Sec. 3.4.1), and that is now having an
interesting development with the foundation of a start-up; the second is the beginning of a new, quite large,
software project, which tries to bridge the work in WP2 and WP3 on the scalability of CNs (Sec. 3.4.2) and

1Please see https://github.com/netCommonsEU/

D3.5: Software Experimentation 33

https://github.com/netCommonsEU/

3. Developments and Use of the PeerStreamer Application

offer communities a tool to predict the evolution of the network as it grows, helpint to take the correct decisions
in investing and setting-up new nodes.
The activity with the Cosenza ninux community and the supervising activity in Sec. 3.4.1, were particularly
appreciated, because the teams felt they really got a contribution from netCommons, and they presented us with
two appreciation letters that we report and comment D6.3 [44] discussing impact and interaction with the ninux
community.

3.1. Dissemination and Feedback

3.1.1. PS-ng Communication and Diffusion

While our communication spanned across different media, our written documents have been of three kinds:
• PeerStreamer-ng website;
• PeerStreamer-ng wiki;
• end-user tailored guides in local language.

In an effort to make PeerStreamer-ng more usable by the community we completely reshaped its website, which
was the product of previous research projects, and was mainly devoted to explain the technical advances that
these projects achieved in the past. Now www.peerstreamer.org2 is designed to clearly advise end-users
on the early steps in our platform adoption, and runs smoothly on mobile platforms. In line with the nature of
the netCommons project all our website content is released under a Creative Commons license.

Figure 3.1: The new website (left) together with the old, non scalable website (left).

For technical, advanced usage, such as re-building the Cloudy container, our website points directly to our
wiki3. A wiki can be very useful to engage power users and invite them in the active development of the
platform.
Keeping in mind that not all community users are fluent in English, and the closer collaboration with ninux
community network we have provided PeerStreamer-ng installation and early-steps documentation in Italian4.

2Also reachable as http://peerstreamer.eu
3See https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki
4Available at https://ans.disi.unitn.it/papers/guida ninux peerstreamer.pdf

D3.5: Software Experimentation 34

http://www.peerstreamer.org
https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki
http://peerstreamer.eu
https://ans.disi.unitn.it/redmine/projects/peerstreamer-ng/wiki
https://ans.disi.unitn.it/papers/guida_ninux_peerstreamer.pdf

3. Developments and Use of the PeerStreamer Application

3.1.2. Tests and Feedback Received

In the third year of the project we maintained contacts and we involved in the test and development several
community networks, from which we received feedback to improve PeerStreamer-ng (more details will be given
in Sec. 3.1.2.3). The interest in the platform has always been high, and we were able to install PeerStreamer-ng
instances in two temporary occasions and two stable installations. In the former two cases it was a good chance
to gain insights on the user’s perception of PeerStreamer-ng, while in the latter cases we guided users to install
and configure PeerStreamer-ng in their own network.
With the purpose of further engaging users and encourage feedbacks, we set up a demo instance of
PeerStreamer-ng in our labs in Trento showcasing a TV channel (BBC) transcoded from satellite broadcast
and a radio channel taken from the Internet5. This idea, albeit intuitive, provides a way to showcase our plat-
form, it was a useful reference for our contacts in CNs and gave the possibility to have a taste of our work
before installation. This improved the collaborative development and encouraged deployments.
ninux community users, in particular, used our demo server, commenting about PeerStreamer-ng adoption,
possible enhancements and appreciated the very short delay PeerStreamer-ng introduces compared to other
platforms.

3.1.2.1. The Battle of The Mesh Event

Our first insights came from Community Network experts at “Battle of the mesh v11”6, a conference focused
on community network technologies where we had the chance to give a demo of our platform capabilities. In
that venue a mixed international community of people running community networks around the world gathers
and discusses many technical and non-technical details about community networks. Every year a mesh network
is created to test and debug routing protocols, and this year, we participated with two people from the Trento
university that spent the whole week setting the network up and installing PeerStreamer-ng in a set of 10
Raspberry Pi that we brought to the conference. A webcam was constantly capturing the conference, and people
in the event were introduced to the software and invited to try it. During the event we also gave a presentation
on PeerStreamer-ng. PeerStreamer-ng was installed on top of the Cloudy platform. Itsdeployment, hence, was
straightforwardly operated by simply connecting the mesh network nodes to the Raspberry Pis with an Ethernet
cable. In this conference we had two main goals, the first was to introduce PeerStreamer-ng to experts and
activits, the second was to take measurements on the live video distribution considering both the loss and delay
of the resulting P2P overlay network.
Fig. 3.2 reports one of the network configuration we tested during the conference, with 15 mesh nodes and 7
PeerStreamer-ng nodes. We were able to run performance tests on a network that was extremely challenging:
it had a very high density, it was running in a crowded room and it was interfered by several other wireless
networks in the area.
Results shown in Figs. 3.3a and 3.3b summarize one of the tests we carried on, with one video source and seven
video sinks, and show that the average delay was limited to less than one second, while the loss was limited
(on average) to a value close to 6%, which is tolerable for live streaming. We also tested PeerStreamer using
various routing protocols, and we confirmed that the change of protocol does not affect the compatibility with
PeerStreamer.
For the development of PeerStreamer-ng Battle Mesh was a key moment because it was a further confirmation
that outside our lab, in a real world challenging scenario PeerStreamer-ng could provide video streaming with
a satisfactory quality. The tests we perfomed confirmed the advantages of PeerStreamer-ng compared to other
approaches, which we better document when describing the deployment we did in the ninux network (see
Sec. 3.3).

5The WebRTC server is on a public IP and can be reached at any time at http://napasource.disi.unitn.it:3000
6See https://www.wireless-meshup.org/doku.php

D3.5: Software Experimentation 35

http://napasource.disi.unitn.it:3000
https://www.wireless-meshup.org/doku.php

3. Developments and Use of the PeerStreamer Application

Figure 3.2: The network topology tested at the Battle of The Mesh Conference.

 680

 700

 720

 740

 760

 780

 800

 820

 840

 0 1 2 3 4 5 6 7 8

D
e
la

y
 [

m
se

c]

Nodes

(a) The delay metric.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0 1 2 3 4 5 6 7 8

Lo
ss

 r
a
ti

o

Nodes

(b) The packet loss metric.

Our audience, composed mainly of power-users, gave us valuable feedback on the interface, the installation
process and other desired features. Three of them are the possibility of encrypting traffic through HTTPS,
sharing other media than webcam (like in screen sharing sessions), and the availability of a Debian/Ubuntu
pre-packaged version for several platforms, which we document later on.

3.1.2.2. Sarantaporo.gr

We gave a second demo at the Sarantaporo public event “Building the community in Community Networks,”
which was organized by the netCommons Project and was participated by the Sarantaporo.gr CN. In that situa-
tion the audience was completely different, and the goal was to share the live video of the conference that was
happening in one of the villages to another village, in a Taverna (a local restaurant).
Albeit the scenario was simpler than in the Battle of The Mesh (we had only one source and a receiving end
of the video) Sarantaporo community network users offered us a different user perspective. We had non tech-
savvy users in a remote village wishing to follow the conference on CNs that we were performing in the main
hall of a remote village. The set-up needed to be completely plug-and-play so that the PeerStreamer devices
(again two Raspberry Pis) needed to be attached to a TV screen and the conference shown to people dining in

D3.5: Software Experimentation 36

3. Developments and Use of the PeerStreamer Application

the Taverna. We kept a textual chat open as a side-channel to receive feedback from the one of the CN member
watching the video, and we helped locals to set-up the video source.
We collected several comments which focused mainly on usability, like resizable playout screen and the possi-
bility to choose the streaming bitrate upon creation of the video source.

3.1.2.3. Developments as a Consequence of User Feedback

Given the feedback we received in the two meetings we described, several developments were carried on in the
last year of the project in order to improve the usability of the platform.

Supported Architectures. While power users (like many CN users are) have no issues in compiling the
PeerStreamer binary from scratch, having our software bundled, packaged and ready to be installed in various
architectures makes the software adoption easier in community networks. To address the typical software
installation scenarios, we decided to provide our software binaries through:

• Cloudy containers;
• Debian packages.

In the first case this was useful to maintain the integration with the Cloudy platform, whose adoption was
described in Chapter 2. In the second, it made it possible to run PeerStreamer in a number of existing devices
in the houses of CNs users.
Bundling PeerStreamer-ng in those package formats is not trivial and we came out we code repositories au-
tomating the process. Binaries target by nature a very specific hardware architecture so we decided to fully
support both packaging formats for both the AMD64 bit and ARM7 32 bit (a.k.a., ARMHF) architectures. The
former is the most widespread architecture for laptops and servers in general while the latter is common in
small network devices like routers and antennas and it is compatible with Raspberry Pi models 2 and 3. We
found Raspberry Pi devices very suitable for out deployment activity as they are:

• cheap;
• generally popular among network passionates;
• coming with a wide variety of well-supported software.

As we described in previous deliverables, PeerStreamer-ng will run on a dedicated device, which can be simply
connected to the home router of a user (via Ethernet or Wi-Fi), and each user will connect to it with a web
browser (we support the Firefox Browser). This simplifies the management of the software and improves
usability compared to a software installed in the user’s PC.
In the initial phase we supported the Raspberry Pi 3+ devices, the latest version of the hardware, which we
bought to test and develop our code. After contacts with the ninux community we tested and refined our code
to work also on previous versions of the hardware, that several ninux users already owned at the time.
Despite supporting two architectures for two different packaging systems requires a relevant effort in terms of
coding automatic build-chains and testing the different package releases, we are persuaded it can maximize the
impact of PeerStreamer-ng in community networks. At each new PeerStreamer-ng release, we hence proceed
with the four different packaging of our software.

Debian Packaging. In order to meet the Debian/Ubuntu packaging requirement we received from community
power-users, we released a building tool chain for PeerStreamer-ng producing a Debian package (a .deb file).
We release our tool chain through the usual netCommons account on github. The tool chain is designed to
download and compile the latest version of our software and to include in the package description the needed
information to handle the software dependencies upon installation. The tool chain can be used to produce

D3.5: Software Experimentation 37

https://github.com/netCommonsEU/PeerStreamer-deb

3. Developments and Use of the PeerStreamer Application

packages for different computer architectures and we are currently providing on our website both an AMD64
and an ARM version7.
After the package installation, which is standard and straightforward with Debian package managers,
PeerStreamer-ng is available as a systemd service. A systemd service is part of the Debian daemons sub-
system called systemd, and it can take advantage from well-mantained software architecture with a uniform
interface. After the installation, PeerStreamer-ng starting and stopping operations can be performed by these
simple systemd commands:

systemctl start peerstreamer
systemctl stop peerstreamer

And setting PeerStreamer-ng as a service launched at system start-up can be done with:

systemctl enable peerstreamer

Debian packaging is also essential to support virtualized installations of PeerStreamer-ng. In a couple of occa-
sions in fact, ninux users asked to install PeerStreamer-ng not in a physical platform (a Raspberry Pi) but in a
Docker Container in a virtual machine they already owned.

HTTPS and screen sharing. After the Battle of the Mesh we were asked to support screen sharing, also called
screencasting. It is reasonably easy to modify PeerStreamer-ng libraries to support this further functionality,
however, popular browsers support it only through HTTPS connections. We implemented HTTPS and screen
sharing support for PeerStreamer-ng on a different development branch of our official code repository. How-
ever, we have not merged this modifications in the main code base as HTTPS brings some extra complexity
complicating user experience. In particular,

1. certificates can only be self-signed (hence, they appear as not trustworthy to the browsers);
2. Firefox browser does not allow to associate a self-signed certificate to multiple TCP ports at once.

Certificates associate a public key to an identity, which is the website hostname in the case of web applications.
Generally, hostnames are stored in Domain Name System (DNS) databases, and, their binding to servers (or
server clusters) is unique. PeerStreamer-ng instances are installed on commodity devices run by community
users, hence they typically do not have a unique hostname registered on some public DNS registry. Even if they
had, users are not likely to pay for the release from a certification authority of the certificate for their hostnames.
For all these reasons, certificates do not contain data that browsers can validate in the usual way and browsers
prompt the users about the un-trustworthyness of the HTTPS connection.
Firefox, one of the most wide-spread browsers in the world, when used with our infrastructure asks users for
accepting the untrustworthy certificate. Moreover, even if the user accepts the certificate, Firefox does not allow
the communications of the Javascript library with both the PeerStreamer-ng back-end and the Janus instance as
they are instantiated on different TCP ports.
To solve this issue we would need to set-up our own Certification Authority (CA) and distribute, together with
PeerStreamer-ng the valid certificate for the CA, to be installed in the user’s browser. This would be highly
impractical, and for this reasons we have thus decided not to merge HTTPS/screencasting features in the main
code base yet.
Note that this is basically the same unsolved problem that any wireless router has when the user connects to
it, since the router has a private IP address which the owner can change, it is impossible to associate a valid
certificate to it. In the future, we can imagine to adopt a strategy similar to the one used by some router vendors,
that use the popular Let’s Encrypt service8 to generate on-the-fly a valid certificate9. Due to the complexity of

7Both of them are available at http://peerstreamer.eu/getit.html
8See https://letsencrypt.org/.
9See https://www.asus.com/support/FAQ/1034294/

D3.5: Software Experimentation 38

http://peerstreamer.eu/getit.html
https://letsencrypt.org/
https://www.asus.com/support/FAQ/1034294/

3. Developments and Use of the PeerStreamer Application

this solution, and the fact that indeed the local wireless network of an user is generally encrypted with a local
key, we did not implement HTTPS in PeerStreamer-ng.

Figure 3.4: The channel creation interface with the optional video quality and video sharing radio button.ad

Platform Development. Web Real Time Communications (WebRTC) technology has proven to best suit our
streaming platform. It supports real-time communication, providing Real Time Protocol (RTP) streams, both
for uploading and downloading. Its implementation is almost pervasive in nowadays devices through the latest
browsers, like Mozilla Firefox, Chrome and Safari.
We have hence extended the integration of PeerStreamer-ng with Janus10, the RTP-WebRTC bridge and ported
our web interface based on HTML and javascript code to work entirely and only with WebRTC. Our current
library, called psng.js, wraps the communication with Janus and it exports a handy and simple interface, easy
to maintain and robust.
In particular, besides initialization functions, these are the key javascript methods provided:

add_streamer(nickname, ip_address, port);
del_streamer(nickname);

The former creates and starts a new video stream for a given IP address and port source port and the latter
destroys it.
Thanks to the insights and early adoptions of community users we could also start a never-ending process of
fixes and debugging to the user interface. A process whose inputs we are very thankful for and whose nature is
inherent of any deployed software. Among the outcomes of this process, our web interface is now completely
designed and implemented to be suitable for devices with different screen sizes. With broad adoption in mind,
we tested PeerStreamer-ng it using laptops, smartphones and tablets.
Finally, following the feedback we received from two communities (ninux and Sarantaporo) we added two fea-
tures, the tunable video quality and the possibility to share only audio, which now appear in the PeerStreamer-ng
interface Fig. 3.4.
10See https://janus.conf.meetecho.com/

D3.5: Software Experimentation 39

https://janus.conf.meetecho.com/

3. Developments and Use of the PeerStreamer Application

Figure 3.5: PartyHub landing page. Users are required to pick a “conference room” and a nickname.

3.2. PartyHub

PartyHub is PeerStreamer-ng component enabling video conferencing. It is provided through the web interface
along with the other functions.
In PartyHub there are two entities, participants and rooms, both identified through nicknames. Rooms are a
logical grouping of participants, they exist as long as at least one participant is active.
When a user initializes PartyHub, she is asked to pick a room name and a nickname. All the users that pick
the same room name join the same conference page with an incoming streaming window for each of the other
participants.

Figure 3.6: PartyHub conferencing room “netCommons” with three active users.

When a user joins or leaves a room, her action is signalled to the other instances which react by updating the
PartyHub interface accordingly. A user joins a room by simply entering the room name in the Graphical User
Interface (GUI) and she leaves it by closing the browser tab. Fig. 3.5 shows the landing page asking for user

D3.5: Software Experimentation 40

3. Developments and Use of the PeerStreamer Application

log-in, while Fig. 3.6 presents a sample video conference page with three participants.
Again at the moment of joining, we provide the users with the possibility of streaming audio only. This feature
is especially useful in situations in which the user upload bandwidth may not to support a minimum video
streaming quality.
PeerStreamer-ng, and hence PartyHub, is composed of three main entities:

• the front-end, namely the web graphical user interface;
• the back-end;
• Janus, the RTP-WebRTC bridge.

This architecture is explained in more technical details in D3.4 [2], here we just recall it to introduce the
developments on PartyHub. All the three entities communicate with each other and they perform different
roles. The front-end is responsible of just issuing ReST HTTP requests and dealing with the web page elements;
Janus (named after the two-faced mythological god), from one side accepts or serves an RTP stream and from
the other serves or accepts a WebRTC stream. Janus uses RTP for streaming to and from the back-end and
WebRTC for streaming to and from the front-end. The back-end is responsible of orchestrating the resources,
dealing with the front-end requests and managing Janus bridges. All these components run in the same host, for
instance a Raspberry Pi, and the user simply uses his/her laptop or mobile browser to access to the service (both
to create and receive the stream). In practice, the user experience is similar to on-line streaming providers, but
there is no server, all the interactions between PeerStreamer-ng nodes happens in a peer-to-peer way.

ask for media sharing
click share

attach plugin
handle

Request WebRTC flow
streaming handle

POST new source

streaming handle

stream shared media through Janus handle

click ”join room”
User: Web GUI: Back-end: Janus:

Figure 3.7: PartyHub videoconference join call diagram.

Fig. 3.7 depicts the interaction flow following the entrance of a user in a videoconference room. All the compo-
nents excluding the user browser are placed in the PeerStreamer-ng/PartyHub installation. The communication
between the web GUI and Janus happens only through handlers exchanged through the back-end which is the
central orchestrator of the resources. With the Janus handlers, the web GUI can receive and stream the media
as they were served directly through WebRTC from the P2P overlay. During the join process, a new streaming
resource is created and, consequently, a new Janus handler is issued. The back-end dictates which RTP ports
the handler is bound to so to start a new P2P streamer and advertise it.
Fig. 3.8 presents the PartyHub periodic tasks performed by the web GUI. The list of the room participants
is updated and, if there are new participants the GUI had not been aware about, new streaming handlers are
requested and the HTML element are consequently updated. The web GUI periodically sends an UPDATE

D3.5: Software Experimentation 41

3. Developments and Use of the PeerStreamer Application

GET streaming lists
participants

attach plugin
handle

Request WebRTC flow
streaming handle

POST part. request

streaming handle

create video element

UPDATE part. request

destroy video element

keep tab open
User: Web GUI: Back-end: Janus:

for each new part.

for each current part.

for each left part.

Periodic

Figure 3.8: PartyHub periodic task call diagram.

request for each of the participant streams to signal it is still interested in receiving them to the back-end.
That prevents the handlers to expire and grants resource de-allocation whenever the user leaves the page even
without notifying it explicitly with the GUI. Finally, the GUI has to clean up the HTML elements associated to
participants whose streaming have expired.

3.3. Experimenting On Ninux

In 2018 we directly approached the ninux community to install, test and adopt PeerStreamer. We contacted
two ninux communities, the one from Florence and another from Cosenza (Calabria, Southern Italy). ninux is
one of the olddest CNs in Europe, but also one that is under a period of internal discussion about its current
organization and its perspectives. Part of this discussion is described in a chapter dedicated to Italy of the Global
Information Society Watch (GISWatch) [45], and has to deal with two factors. The first is that the size of the
community decreased, as an effect of both people leaving the community, but also of people leaving their cities
and the country. Many people in the ninux island of Rome left the city, as well as those in the ninux island of
Florence. In Florence, since the beginning of 2016 when the project started to interact with them, 5 key people
(over the about 10 the community had initially) left the city for various reasons, and the network size started
to decrease. The second reason, which is well explained in the GISWatch chapter is that ninux has always
been a community with a very hacker-oriented mindset. Offering Internet Connectivity was never the primary

D3.5: Software Experimentation 42

3. Developments and Use of the PeerStreamer Application

goal of ninux (see also Deliverable D1.2 [46]), it was the side effect of a community primarily interested in the
technical and ethical-political values related to community networks. Nowadays, the WiFi technology is well
established and some of the technical curiosity that initially moved people to join ninux has faded. Yet there are
some of the ninux islands that are growing, thanks to the effort of a core or people working on the infrastructure
and to a real attachment to user’s needs, which require Internet access but not only. Among these there is the
ninux island of Cosenza, which has been active in the last period both in renewing the technological base of the
ninux nodes, but also in re-discussing the legal organization of the community (see for instance the interactions
documented in D4.3 [47]). With these two communities, Florence and Cosenza we were able to set-up tests
and fixed installations in their network nodes.

3.3.1. The PeerStreamer-ng Architecture for ninux

(a) The streaming architecture using IceCast. (b) The streaming architecture using YouTube.

Figure 3.9: Two centralized streaming models.

PeerStreamer-ng resulted as a valid tool for ninux users because it offers two services that are unique in the
context of video streaming in CNs: live video streaming (one-to-many) and video conferencing (many-to-
many, PartyHub). The alternatives to PeerStreamer-ng are essentially two, the first is to use an internal open
source video streaming service like Icecast11. With Icecast, represented in Fig. 3.9a the source of the video
generates one single stream for every recipient of the video, irrespectively if the users are inside or outside the
network. This actually generates an excessive load on the link that connects the video source to the rest of the
network, and potentially to the gateway link if the video is served also outside the CN. Moreover, Icecast is not
optimized for live video streaming, thus it introduces a very high overhead due to the use of an application layer
not tailored to real time communications like WebRTC (see the discussion in [2] for the tests we performed with
various protocols before converging to WebRTC). The second option is to use an external video service like
YouTube, and let all the users receive the stream from the YouTube platform. While technically feasible this
is not welcome by the community, which feels that forcing people to use a cloud-based proprietary solution is
not aligned with the values of a CN. Moreover, this only partly solves the problem of the bandwidth erosion, as
there is only one single video stream exiting from the source, but there is still one video stream per user, which
will still produce a relevant load on the CN gateway as shown in Fig. 3.9b.
PeerStreamer-ng solves this problem with a balanced distribution of the load on the network links, as there
is only one video stream to each PeerStreamer installation, which potentially redistributes the stream to more
than one client. The presence of an instance of PeerStremaer-ng installed in a public server at the University of
Trento also made it possible for people outside the network to watch the video without installing PeerStreamer-
ng. The architecture described in Fig. 3.10 was the product of a series of interactions with the ninux community
members (and not only, also with other people involved in the streamed events) which led us to this solution.

11See http://icecast.org

D3.5: Software Experimentation 43

http://icecast.org

3. Developments and Use of the PeerStreamer Application

Figure 3.10: The PeerStreamer-ng configuration used in ninux; the presence of a public server allows two
islands to easily share the same session with minimal resources.

The key elements to observe in Fig. 3.10 are the following ones.
• The load in the network links is evenly distributed, avoiding overloading of some specific link.
• People outside the CN can watch the video from the public instance of PeerStreamer-ng installed in the

premises of the University of Trento.
• Every user inside the CN can watch the video stream from his/her own PeerStreamer-ng node without

the need of a dedicated stream from the source.
• More than one user can watch the same video from the same PeerStreamer-ng node. After the first user,

this does not create additional load on the network.
• Even if a user does not own a PeerStreamer-ng node he/she can watch the video from another

PeerStreamer-ng node (in ninux or the public one).
• PeerStreamer-ng is fully protocol-agnostic, it does not depend on the support of the underlaying routing

protocol. This is a key difference with any IP multicast-based solution, for which there is no stable
support in the most used routing protocols for mesh networks.

The PeerStreamer-ng nodes receive an IP address from the local router of the user. This IP address must be
routable in the CN in order for other nodes to exchange packets (CNs do not use Network Address Translation
(NAT) to segment local networks). Yet the IP addresses used are private IP addresses and can not be routed
on the Internet. To bridge the public instance with the ninux ones, we configured the PeerStreamer-ng nodes
to acquire an address not only from the local network but also from a private class which belongs to a Virtual
Private Network. This class can be routed both in the CN and in the Internet (via the Virtual Private Network
(VPN)). In practice, a node in ninux may or may not have a local gateway (a standard ADSL connection) and the
routing protocol (in this case OLSRv2) will decide which is the most convenient path (through ninux or through
the VPN via the ADSL). This also solves another problem, that is the uplink bandwidth scarcity on the source
when the video needs to be distributed to the Internet. Let’s say that the source node has an ADSL connection.
With the YouTube solution, the node will use its own ADSL connection to upload the video to YouTube. If
the connection is not fast enough, the quality of the streaming will be affected. In PeerStreamer-ng, from the
source the video is shared among more ninux nodes, and from each ninux node, potentially, a fraction of the

D3.5: Software Experimentation 44

3. Developments and Use of the PeerStreamer Application

chunks can be sent to the public Internet instance, thus obtaining an effect of connection bundling. In fact,
PeerStreamer-ng nodes (even without anybody watching the video) contribute to the distribution of the video
chunks inside the ninux network, but also towards the publi Internet instance. This is possible only thanks to
the P2P algorithms used in PeerStrreamer-ng, and would not be possible with any other option.
In the current deployment, the two networks (Florence and Cosenza) are not bridged due to difficulties in
configuring both networks to work this way at the same time. In the next events programmed for 2019 we plan
to bridge the two networks.

Streaming Tecnolokia in Ninux Florence. As described in [3] the ninux CN of Florence started to realize
a set of skill sharing talks together with other organizations in Florence. Before the summer a first series of
talks were organized, and in fall 2018 four more events were organized12. Before the last two talks, three
PeerStreamer-ng nodes were installed in the houses of people in Ninux Florence, and also the link to the public
instance was publicized in the ninux telegram chats (and also other chats of interested people).
The key “selling point” of PeerStreamer-ng was the simplicity of its use and the excellent trade-off between
the video quality and the low resources needed. The speaker could simply connect to the ninux network (in the
place where the talks took place there is a ninux node called “ex-fila”, described in D3.6 [3]) and from there
connect to any PeerStreamer-ng instance in the network (or the public one) via his browser. No configuration,
log-in, or software installation was needed, just a Mozilla Firefox browser. Moreover, in the ex-fila ninux node
the available bandwidth of the Internet connectivity is extremely low, so that with a one-to-many transmission
model there would have been no practical way of achieving the same result using some on-line service.
Since PeerStreamer-ng is a fully P2P software there is no practical way of counting the effective number of
users watching the streaming sessions. For this reasons we publicized the talks in ninux chats (and other non-
ninux specific chats) and then we asked people to give us feedback on these chats. In both events we could
gather feedback from 3-7 viewers, which, considering that the live audience was about 15-20 people was a
positive response. Interestingly enough, among the remote audience there were at least two ninux users that
could follow the talk even if they do not reside in Italy anymore.
As a conclusion, setting-up this testbed was challenging due to several reasons, both in the technological and
in the social domain. At the very beginning we had to support ninux Florence to recover part of their network
that, due to decrease of the participation in the community, was non-functional. A large amount of work was
needed to design and implement the architecture depicted in Fig. 3.10, to help people setting up PeerStreamer
nodes, and to help them to organize the talks (one of the talks was held by Leonardo Maccari). It was an
iterative process which helped the community to acquire a new internal service which solves some practical
issues. The ninux community has shown interest, the PeerStreamer-ng nodes are still running and for 2019 the
new skillsharing nights will also be streamed using PeerStreamer-ng.

PartyHub in Ninux Cosenza. Another Ninux island has shown interest in using PeerStreamer-ng in their
network is Ninux Cosenza. In this case, we just proposed the installation and use of PeerSteamer-ng to the
community, and gave them feedback and support for the installation phase. As a result, there are now 3 instances
of PeerStreamer-ng running in the ninux island of Cosenza, on the nodes of three users that dedicated one
Raspberry Pi to PeerStreamer-ng. PeerStreamer-ng is mostly used for one-to-one video communication, thus
using PartyHub as a video conferencing tool. Again, the “selling point” of PeerStreamer-ng is its easyness, and
the excellent performance on a local network. In fact, the use of the UDP transport protocol together with a
really lightweight signaling overhead reduces the latency compared to a web-based, TCP-based solution. An
appreciation letter from the community of Cosenza is reported in D6.3 [44] describing their experience with
PeerStreamer-ng and netCommons in general.

12See http://www.firenze.ninux.org/2018/10/21/continua-skill-sharing/

D3.5: Software Experimentation 45

http://www.firenze.ninux.org/2018/10/21/continua-skill-sharing/

3. Developments and Use of the PeerStreamer Application

3.4. Additional activities: the Turnantenna, and the CN Graph Generator

3.4.1. The Turnantenna

During the third year of netCommons, one member of ninux Florence, Marco Musumeci, started to develop
a project that was previously bootstrapped by another member, Salvatore Moretti. The project is made of the
hardware and software design of a device named “Turnantenna”, which is a two-axes motor plus a 3D-printed
structure to be able to point a ninux device from remote. At the very beginning the project was imagined and
realized by Salvatore in his spare time, and never reached enough maturity to be deployed. Later on, Marco
took over the project and decided to develop it using a different approach.
Marco, being a Mechanical Engineer, was fascinated by the idea and contacted Leonardo Maccari to imagine
a path that could make the project come to life. Leonardo Maccari agreed to support the project, and invited
Marco to review the Participatory Methodology developed in WP3. At the time the methodology was not yet
fully defined, and it seemed to be too complex to be applied to a one-man project. Later on instead Marco
understood that the project was more complex that he could handle and he needed to frame it in a broader
context, there he re-evaluated the possibility to use the participatory methodology. He decided that to make
it successful the project would need to be realized with the support from members and non-members of the
community, to find sources of funding and to publicize it with other people inside and outside ninux. In short,
the methodology motivated him to modify the spirit of the initial project to make it sustainable.
From May 2018, Marco was able to receive a scholarship from the Google Summer of Code to develop the
Turnantenna13, he presented his work to ninux meetings and to the audience of the Battle of the Mesh. After
the summer he submitted it to the open call of the Maker Faire in Rome (the largest makers faire in Italy), there
it was accepted, presented in a dedicated stand and received an award. It was featured on a French engineering
magazine, and as Fig. 3.11 show the Turnantenna is on its way to completion.
Leonardo Maccari followed and guided his work, and recently Marco, together with other ninux (and non-
ninux people) participated to an accelerator programme to create a start-up on the concept of the Turnantenna,
a small contribution, maybe, but an interesting industrial evolution on netCommons. A letter of appreciation
signed by Marco is reported in n D6.3 [44], where he describes how the participatory methodology and other
netCommons results were instrumental to carry on his work.
After we received the letter the Turnantenna project was chosen among the best three projects of the
programme and will receive a seed funding to start a social enterprise.

3.4.2. The Graph Generator

As a result of the work carried on in various WPs in netCommons, for instance WP2 dealing with the scalability
of community networks, we started a completely new line of research. UniTn led this effort to realize a new
realistic topology generator for community networks, with the contribution of AEUB-RC and UPC. The goal of
this research effort is to characterize the technical scalability of a mesh-based community network, and, on the
long run, to estimate its social impact in various real-world scenarios. Exploiting open source resources, such
as Open Street Map and very detailed (less than 1 m resolution) Laser Imaging Detection and Ranging (LIDAR)
data on buildings, we introduced a framework for the stochastic forecast of the growth of a Community Network
given the area where the community starts building it. This base methodology, implemented into an automated
tool, takes into account the technical and economic feasibility of adding nodes to the network, as well as
guaranteed limits on the per-node performance of the network in saturation predicting the topology of the
network and its limit size given the above constraints.
The methodology is coupled with simple economic incentive schemes to explore if proper incentives mecha-
nisms can influence (and improve) the growth of the network. We selected four different scenarios: Urban,

13See https://blog.freifunk.net/tag/turnantenna/.

D3.5: Software Experimentation 46

https://blog.freifunk.net/tag/turnantenna/

3. Developments and Use of the PeerStreamer Application

(a) The initial renderings of the
Turnantenna. (b) The electrical scheme.

(c) The Turnantenna shown at the
Maker Faire, with a blue ribbon

award.

(d) Marco Musumeci Featured on the French Engineeringnet magazine.

Figure 3.11: Various phases of development of the Turnantenna project.

Suburban, Intermediate, and Rural targeting spots in Tuscany, Italy. Results in all these scenarios highlight
the characteristics of the topology that spontaneously emerge from the natural growth of the network, and the
advantages that properly crafted incentives bring to this process, improving the size, the performance, and the
resilience of the network emerging from this spontaneous process.
We realized an open source network generator which is already available on-line14. This software is made
of a back-end and a front-end. The former is a PostgreSQL database where we loaded the map, the building

14See https://github.com/AdvancedNetworkingSystems/TerrainAnalysis.

D3.5: Software Experimentation 47

https://github.com/AdvancedNetworkingSystems/TerrainAnalysis

3. Developments and Use of the PeerStreamer Application

positions and a layer representing the altitude measured with LIDAR. The database can be queried to know
if there is line-of-sight between two buildings. Moreover, we included data coming from the data sheets of
commercial outdoor Wi-Fi devices in order to be able estimate the available bandwidth of the wireless links.
The former is a software able to generate random topologies with queries to the database, and estimate how
much a network can grow before it breaks some quality threshold we set as a stop condition. For each network
we also output an estimation of its cost in terms of capital expenditure needed to set-up all the network nodes,
based on the average prices of the wireless device.

Figure 3.12: A potential network generated in the area of Florence (Italy), with details on a specific link.

This line of research has endless possibilities of future extension, among which we mention:
• Characterizing the sustainability of mesh community networks in different scenarios: urban, rural, sub-

urban. We will answer the question: is a mesh network a competitive option for a specific geographical
area?

• Detailing the technical good practice that make a mesh network scale. We will answer questions on what
kind of device, what number of device and what specific configuration members have to use to achieve
long-term scalability, which is generally in competition to short-term targets (like reducing the cost or
maximising the local available bandwidth). As studied in WP2, robustness and absence of single points
of failure can be one of the outcome of this process.

• Studying the various economic approaches that can be adopted to make the network sustainable. We will
answer the question: what is the best cost-sharing model for a network growing in a specific geographical
area?

• Producing open APIs to let members know in advance if there is line of sight between one building and
another, and what is the maximum bandwidth they can expect with certain Wi-Fi devices. Community
networks members today have no tool to perform this task, and need to physically go on roofs to check

D3.5: Software Experimentation 48

3. Developments and Use of the PeerStreamer Application

the presence of line-of-sight.
The results of this activities are included in a submitted paper, currently under review, with authors from
UniTN, AUEB and UPC [48]. The paper has been invited to a special issue in Elsevier Ad Hoc networks, the
most important journal in the area of distributed wireless networks.

D3.5: Software Experimentation 49

4. From CommonTasker to AppLea: experimentation
and development activities

For the cooperative mobile app fro smart farming, the third year of the project marked the beginning of the actual
experimentation with the app under actual conditions of intended use. Decisive to this end, much as throughout
the app participatory design and development process, was the engagement of the local community of the
Sarantaporo.gr CN. The feedback from this field experimentation has been the main driver for the development
activities around the app this year.

4.1. From laboratory experimentation to field experimentation

The development of the Android mobile app was conceived from the beginning of the project as a participatory
design process, which would involve the local community in all its design and development steps. During the
first two years, the engagement of the community was mainly achieved through physical and virtual meetings.
In these meetings, we (the development team) would present the current status of the app and the community
would give us feedback as to what could or should be added/removed/modified. The workshop in Milea village,
in the Sarantaporo area in November 2016 and the subsequent physical meetings with the Sarantaporo.gr team
in February, May, and November 2017 were key moments in this process [49, 6]. In between, several phone
conferences and exchanges with the community gave further inputs to the app development process.
Within 2018, the engagement of the community in the design process both escalated and became more sys-
tematic. The first step to this end, in the beginning of the year, was to set up an extended alpha testing team
that comprised the AUEB development team (A. Pilichos, M. Karaliopoulos), the Nethood colleagues that
coordinated the participatory design process (P. Antoniadis, A. Papageorgiou) and three members of the Saran-
taporo.gr CN (G. Klissiaris, V. Chryssos, A. Vaitsis). These seven people formed a tight group that tested the
first “internal” releases of the app. Its short-term mission was to ensure a stable version of the app, which could
be presented and distributed to selected community members in the Sarantaporo area for field testing.
This indeed happened in the weekend of March 10-11 in the context of a workshop that took place in Flambouro,
one of the 14 villages served by the Sarantaporo.gr CN. Besides presenting the first open release of the app
and explaining how this could be downloaded and bootstrapped (user profile creation, credentials etc), we
set up what would serve as the beta testing team for the app. This team included three farmers from the
Sarantaporo area, who are members of the Sarantaporo.gr CN (S. Katis, D. Dallas, T. Minas). They come from
different villages in the area and have different skills and experience with mobile apps (from elementary to
more advanced). The latter was deemed critical for making this team representative of the potential users of the
app and give more credibility to the process.
One of the first outcomes from the March workshop in Flambouro was the official renaming of the app, from
CommonTasker to AppLea. CommonTasker was the original name given to the app by the time of the netCom-
mons project proposal, given the aspirations about it by that time [1]. AppLea is the name chosen by the beta
testing team, essentially a pun on the name of a village in the area.
From the workshop on, the two groups, the alpha testing and beta testing teams, have coexisted and exper-
imented with the app in parallel. Most of their exchanges have been through Telegram groups, letting all
questions and requests be shared among the whole group. From March till December, there have been five
updates of the app (releases) for experimentation by the beta testing team, and more internal releases for in lab
testing by the alpha testing team. Each new release incorporated the responses of the development team to the

D3.5: Software Experimentation 50

4. From CommonTasker to AppLea: experimentation and development activities

Figure 4.1: Plan for experimentation with the app, in-lab (alpha testing) and field (beta testing).

feedback received by the alpha and beta testers on the previous release, closing one round of exchanges with
the beta testing team and initiating a new one. We describe the changes that were made in each component of
the mobile app in Sec. 4.2.
Fig. 4.1 captures the roadmap of experimentation with the app during the last year of the project. A final
meeting in the Sarantaporo area is planned for early February to further promote its use to the local community.

4.2. Evolution of the AppLea functionality through community feedback

In what follows, we describe the main development activities that took place around the app in Y3 of net-
Commons. This description is organized largely in line with the structuring of the app modules in D3.4 ([2],
Section 4.3 “Application architecture and design”). We report here changes that have been made with respect
to the status of the modules reported therein. Screenshots are presented from the mobile front end, the part of
the app that is visible to the end users and the one the feedback from beta testing concerned. Several of the
requested changes were addressed by minor additions and modifications in the way information is organized
and presented to them and could be resolved fast. In most cases, however, the requested changes demanded
more extensive modifications, with implications for the backend of the application as well.
In summary, what came up during the testing/experimentation phase is that the users expressed far higher in-
terest for the logging functionality of the app. Namely, they insisted on finer details regarding how information
about their farming activities can be most efficiently and easily logged down and a posteriori retrieved. On the
contrary, they showed less enthusiasm about the capability to share data with other users. In fact, several of
those expressed concerns about the kind of information that could be exchanged since they anticipated some of
their practices and how-to knowledge in the farm as a comparative advantage that they did not want to dismiss.
The changes that were made to the app reflect the user preferences, as expressed in the feedback received
primarily from beta testers, and to a lesser extent, by alpha testers. In user interface terms, compared to the app
status in [2], the calendar module was promoted to a major app module, while the gamification module was
demoted to a less important one. Commensurate with this bias in users’ preferences was the effort we invested
in modifying and enhancing each app module. Yet, we made sure that the app supports data sharing, at least as
an option for those who want to practice it.

4.2.1. The splash page

The original splash page was fully replaced in the course of the beta testing process. First, we changed the
main graphic to reflect better the revised focus of the application on farming activities, rather than as a more
generic tool for crowdsourcing activities and sharing [2]. The new version of the AppLea splash page is shown
in Fig. 4.2a. It no longer consists of two frames, this was deemed an unnecessary overhead and an out-of-date
design practice. There is one graphic instead and an enter button that guides the user to the login page of the
app.

D3.5: Software Experimentation 51

4. From CommonTasker to AppLea: experimentation and development activities

(a) Menu button at the splash page. (b) Menu added to the top-left of the splash page.

Figure 4.2: The revised AppLea splash page.

(a) About the app. (b) FAQ. (c) Terms of use.

Figure 4.3: Additional pages with information about the app, attached to a menu button on the splash page.

Second, and more important, in response to requests by Sarantoporo.gr members in the course of the alpha
testing process, we have added a menu button at the top-left part of the splash page (Fig. 4.2b). The menu

D3.5: Software Experimentation 52

4. From CommonTasker to AppLea: experimentation and development activities

links to a set of pages providing information that users typically want to have about the app: an about page,
summarizing who developed the app and for which purpose (Fig. 4.3a), a summary of its capabilities, an FAQ
(Frequently Asked Questions) page (Fig. 4.3b), and, last but not least, pages concerning the Privacy policy and
the Terms of Use of AppLea (Fig. 4.3c).

Figure 4.4: Login page – authentication options.

4.2.2. The Login Page

We have added the possibility to sign in a user through his/her mobile phone number. The mobile number
rather than an email address serves as username (Fig. 4.4) and the user gets an SMS message to her phone with
a one-time code she can use to sign in.
This functionality was requested because many users in the Sarantaporo area, in particular the elderly ones, do
not have an email account.

4.2.3. The user profile pages

The user profile pages have been extended, both in terms of information items and detail. The enriched infor-
mation is organized under three different blocks, which are accessed by respective buttons on the main profile
page (see Fig. 4.6a).
We defer the discussion of the statistics’ block for section 4.2.8 and focus on the changes in the other two
blocks, the one related to the Field Browser module and the personal information. Three main additions were
made in these two blocks, in response to requests from the beta testing team.

• One set of changes related to the Field Browser tool (see Fig. 4.5). On the one hand, we have extended the
information that is stored as attributes for the fields/farms a user possesses (or hires). We now distinguish
between cultivations that are characterized biological and those that are not since the former demand way
more detailed reporting of the farming activities than the latter.
On the other hand, we have put significant effort to ease the way information is added to the field browser.
The field entries have edit menus that let users alter the information relating to them; the user can spell

D3.5: Software Experimentation 53

4. From CommonTasker to AppLea: experimentation and development activities

(a) Field info embedded in a map interface. (b) Editing field information with speech recognition.

Figure 4.5: The revised interface for adding fields to a user’s profile.

(a) Main profile page. (b) Editing profile info. (c) Privacy settings.

Figure 4.6: Profile page – intensity of tractor use and sharing configuration per type of farming activity log.

out the name of the field, using voice recognition capabilities; and we let all other attributes be chosen
out of spinners (drop-down lists) and increase/decrease buttons.

D3.5: Software Experimentation 54

4. From CommonTasker to AppLea: experimentation and development activities

• Our beta testers explicitly requested to be able to get timely periodic reminders about the need to lubricate
their tractors. In response, we added a field under the personal information block characterizing the
tractor use (heavy, intermediate, light), as shown in Fig. 4.6b.

• Finally, we enhanced the user profile with privacy control options. More specifically, as shown in
Fig. 4.6c, we let the user specify which log entries can be shared with other app users and which are
not. At the profile pages, the categorization is at the level of activity, the default value being set to non-
sharing. There, a user may choose (opt-in) to share all log entries relevant to harvesting, turning sharing
to the default practice. Yet, (s)he may override this default setting online for a particular post (s)he may
want to share or keep private with other users.

Figure 4.7: The revised AppLea app homepage, featuring a large calendar as asked by beta testers.

4.2.4. The user homepage

This is the page where the mobile app user lands, after signing in the application, and now it display basically
the calendar as shown in Fig. 4.7. The changes that were made here are the following.

• The calendar module is promoted to the main element in the page, covering a larger part of its area and
displacing the scoreboard extract that appeared in the app version reported in [2]. This change was made
in response to an explicit request from the Sarantaporo.gr members who are part of the alpha testing
team. We discuss the calendar module in more detail in Sec. 4.2.5.

• We have retained the menu bar at the bottom of the page, as fast entry points to different modules but
changed these modules. The revised bar includes links to the user profile, the log history (“history” but-
ton), the social layer of the app (“community” button), which lets users socialize and exchange content,
even beyond the strict farming context, and the weather module.

• We have added an action button linking to weather information. Although there are various sites around

D3.5: Software Experimentation 55

4. From CommonTasker to AppLea: experimentation and development activities

(a) Fertilization. (b) Spraying. (c) Harvesting.

Figure 4.8: Log entry forms for different farming activities included in the calendar module.

providing weather information, the inclusion of such information as part of the app, was requested em-
phatically by the beta testers. We elaborate on the implementation of the weather module in Sec. 4.2.6.

4.2.5. The calendar module

As already mentioned, the importance of this module increased during the testing phase. Many of the comments
we received from beta testers concerned the finer details of this module.
Most of those related to the precise format of the forms used for logging the different types of farming activities.
In this context, the generic recommendation of the beta testing team was to “minimize user text insertion”. This
implied, for instance, that drop-down lists should be used instead of text fields, wherever possible. As a result,
we got in touch with agronomists and got hold of lists with all brands of fertilizers, pesticides, and weed killers
that circulate in the Greek market, so that we could enter them as choices in these forms.
Likewise, we got much advice from beta testers as to what matters most for each activity (for example, in the
case of irrigation, what matters is the volume of water consumed rather than time) as well as which measurement
units they are most familiar with (e.g., bags of fertilizer). On a similar note, we detailed the harvesting form
allowing the user to specify the round of harvesting (“hand” of a harvesting, as the users say, typically ranging
from one to four). The new layout of the module is shown in Fig. 4.8.

4.2.6. The weather module

The request from the community members and beta testers is to have weather information as part of the app
and, if possible, predictions in the hourly scale. They also informed us that there were two weather stations in
the area, set up by independent entities and urged us to use their data.

D3.5: Software Experimentation 56

4. From CommonTasker to AppLea: experimentation and development activities

(a) Weather per day. (b) Weather per hour. (c) Adding weather stations.

Figure 4.9: Weather module in AppLea.

In response to this request, we invested more effort and code in the weather module to present weather informa-
tion on an hourly basis, as shown in Fig. 4.9. To our surprise, the weather module proved very popular among
the beta testers who came back with several suggestions as to how to format the presentation of the weather
information.

4.2.7. Log history – processing capabilities

After the calendar module and the activity logging forms, this is the third part of the UI that saw many important
changes in response to the suggestions and requests made by the beta testing users.
The main addition here relates to filtering capabilities. The log history presents the user with all entries he/she
has made to the log, in reverse chronological order. The user can filter the full list of entries based on different
information fields including time, name of the field, type of cultivation, farming activity carried out, as shown
in Fig. 4.10. This lets him/her get a quick summary of all activities related to a specific farm, or time interval or
iterate on a specific farming activity across all farms. The filtering action can be composite, i.e., the log entries
can be filtered simultaneously along more than one filtering criteria.
The main user capability that filtering facilitates is the binding of log entries into reports that can be exported as
.pdf files. Such reports can then be printed and be submitted to agronomists to get advice about best practices
or identify possible reasons for unfavorable events (e.g., excess weed growth in a cultivation or unexpectedly
small crop). Such reports, on per farm basis, can be also delivered to cooperatives, in particular when the
cultivation is a biological one (Fig. 4.11).

D3.5: Software Experimentation 57

4. From CommonTasker to AppLea: experimentation and development activities

(a) Filter by activity. (b) Filter by time interval and activity.

Figure 4.10: Applying filters to the log history.

(a) Generate a pdf file. (b) Name and save the generated file.

Figure 4.11: Exporting a subset of posts, after filtering, as pdf files.

4.2.8. Farming activity statistics

This is the second important outcome that can emerge out of processing the log history, besides the reports. The
produced statistics come in two main forms: text reports and plots. In the first case, the app can return to the

D3.5: Software Experimentation 58

4. From CommonTasker to AppLea: experimentation and development activities

(a) Crop size across fields.
(b) Weather time series across an interval of forty

days.

Figure 4.12: Example illustrations produced by the app.

user a specific statistic (s)he may request about its activities; for instance, the aggregate amount of water used
in irrigation over a specific time interval or the average consumption of water through the year over a specific
field.
In the second case, different types of visualizations are supported: line charts, bar plots, and pie charts are the
main ones, the first two shown in Fig. 4.12. This is by far one of the most dynamic parts of the application,
which is being updated as more suggestions are made by the alpha and beta testing team as to what kind of
statistic might be of value for the users.

4.3. Iterating on the app impact

Since the original conception of the app and throughput its development, the bar has been set high regarding its
potential impact on the CN and the local community. Recalling the original plans for the app and their evolution
through the interactions with the community during the first year of the project, the app could ideally serve two
purposes:

1. Become itself a reason to join the CN and engage in the community activities.
2. Catalyze synergies with external actors who could contribute to the sustainability of the CN.

The first purpose was identified already during the project preparation phase and projects the role that added-
value applications, tailored to the needs of the local community, could play in the evolution of a community
network such as the Sarantaporo.gr CN.
The second prospect, which emerged during the November ’16 workshop in the Sarantaporo area (see [49] for a
detailed report out of that workshop) was to turn the app into an integral component of a broader smart farming
system currently under deployment throughout Greece (www.gaiasense.gr) and a catalyzator for a win-win
synergy between the non-profit Sarantaporo.gr entity and the for-profit entity that deploys this system (in [2]
we describe in detail the motivation and the potential of such a synergy). This was a more ambitious objective,
going far beyond the Task 3.4 objectives. In what follows, we iterate on the project outcomes with respect to
both directions.

D3.5: Software Experimentation 59

4. From CommonTasker to AppLea: experimentation and development activities

Figure 4.13: Telegram groups used as channels of remote interaction with the alpha- and beta-testing team.

4.3.1. Interest of the local community in the app

There are both positive and negative signals in this context, fortunately with the positive one outnumbering the
negative. The following list discusses the positive points and signals we got from the community.

• The active engagement of community members throughout the application design and development.
From their early comments and remarks, which led us to reshape and focus the app (see [2]), our ex-
changes with them in physical and remote virtual meetings, till their more regular and structural feedback
in the context of the alpha- and beta-testing process, they have embraced the app and given very useful
feedback to it. The original beta testing team was formed in the March workshop in Flabouro. During
the July workshop it was expanded with a new member, increasing the number of those sending feedback
about the app. Telegram groups (Fig. 4.13) were used for the exchanges with them and a link thereby
pointed to the latest update of the app for easy download.

• The beta testers showed that they appreciated the presentation of the app in the EuCNC conference in
Ljubljana [50] and the positive comments we had received there. These were communicated to the people
through posts of pictures and text in Telegram groups and appeared to give them further incentives since
their feedback was intensified the couple of weeks that followed.

• Statistics that can be drawn from the backend of the app (see Fig. 4.14 and Fig. 4.15 suggest that the
cycle of app users beyond those who are “officially” members of the beta testing team has opened early.
Fig. 4.14 shows the distribution of users per country, that is obviously concentrated in Greece, apart from
netCommons members logging for testing or curiosity. Fig. 4.15a plots the number of different active
users of the app on a daily, weekly and monthly basis. The rise of the curves is aligned with the March
workshop in Flabouro and the set-up of the beta testing team. Fig. 4.15b shows the activity, which is
obviously related to the number of users, but allows based on the number of events logged at the backend
regarding the app use.

D3.5: Software Experimentation 60

4. From CommonTasker to AppLea: experimentation and development activities

Figure 4.14: Distributions of user per country.

These statistics imply that the app has been promoted and spread by the word of mouth, before any
promotional action on our side.

(a) Active users time series. (b) Dashboard card with a more detailed view.

Figure 4.15: Information about use of the AppLea, as extracted from the analytics of the Firebase backend:
active app users, activity, and geographic distribution of users.

On the negative side, the effort to generalize the use of the app has had to cope with a couple of facts that,
although easily predicted, represent generic stumbling blocks that slow down innovation and adoption of tools
like AppLea.

• First, the use of electronics means to log down farming activities is anything but common practice among
the Greek agricultural population. Recall, that this counts as the main bottleneck towards the wide spread
of smart farming processes in Greece, e.g., in the case of the gaiasense system, which we discussed in
D3.4 [2].

D3.5: Software Experimentation 61

4. From CommonTasker to AppLea: experimentation and development activities

• Second, the understanding about Internet and what can someone do in (with) it is partial and biased,
an alternative symptom of what we refer to as “digital divide”. Most of the CN users, including the
younger members understand Internet as a synonym of social media; hence, a means for entertainment
and socializing. Few members appreciate the opportunity of comparing prices for agricultural products
and having the chance to save money when making purchases. But this is far from anticipating that the
network and the mobile device can replace the pen and the notepad, as business tools.

4.3.2. The app as an enabler of CN synergies

During the first two years of the project lifetime, some good steps in this direction were taken. First, in the
workshop of November ’16 in the Sarantaporo area, the prospects from a synergy of the CN with the commercial
gaiasense system were identified, noted down, and analyzed at first hand. Then, in the February ’17 meeting
in the Neuropublic premises (a main stakeholder in the gaiasense system), we discussed some experimentation
steps that could validate the operation of the system over the CN and the app use as a means to collect the
data on farming activities. By summer 2017, an innovation proposal was submitted with the participation
of Sarantaporo.gr, Neuropublic and Athens University of Economics and Business to a national research and
innovation program funding synergies between academic/research institutions and private sector.
Unfortunately, these efforts did not result in tangible outcomes, at least within the time frame of the netCom-
mons project. Two were the main reasons for this, in our opinion.
First, it was quite hard to align the agendas of the two actors, i.e., Neuropublic S.A., having the main responsi-
bility for the gaiasense system, and Sarantaporo.gr CN. For gaiasense, the main effort during the project period
was devoted to pilot deployments of the system in cooperation with agricultural cooperatives. For the Saran-
taporo.gr CN, the primary concern was the upgrade of their network equipment and the transition to a new
subscription scheme. Although a synergy between a non-profit entity (Sarantaporo.gr) and a for-profit one (ga-
iasense system stakeholders) was innovative and promised mutual benefits for both parties, it was not a priority
for either of them. The rejection of the submitted innovation proposal marked a missed opportunity to align the
two agendas and make progress on this front.
Second, there has been a sort of trust gap between the two main entities, mainly on the side of the Sarantaporo.gr
CN. Being a non-profit entity, with political values and concerns about privacy and data management policies,
it faced with scepticism the data management practices of the gaiasense system. In this respect, there were
thoughts about treating the farming data from users in the area as a community asset and catering for local
storage, but these stood at odds with the cloud-based architecture of the gaiasense system.
For sure, these two reasons are interrelated, i.e., the trust gap is most probably one reason why the synergy was
not pursued more actively by the two parties. In any case, the AppLea app became the vehicle to explore new
opportunities, earlier unforeseen, for the Sarantaporo.gr CN. As the CN will continue seeking paths towards a
long-term sustainable operation, and the gaiasense will need ways to engage farmers in logging their farming
activities, the seeds that were planted in the project may have more chances to bear fruit.

4.4. A final note: open source backend alternatives to Firebase

As discussed in more detail in D3.4 [2], the backend server in AppLea has been implemented on Firebase, a
powerful mobile and web application development platform led by Google. There are several reasons for this
choice. First, Firebase is a powerful tool with many capabilities, including functionality leveraged from other
Google services, which have been key to the AppLea functionality, such as the real-time synchronization of
mobile devices. Second, by the time this report is written, it is an active project that continues to innovate,
ranking first in the preferences of the app developers’ community. Third, it features an attractive pricing policy
(free up to 1 GB storage space and 10 GB downloads monthly, 25 USD per month for more intensive usage)
summarized in Table 4.1.

D3.5: Software Experimentation 62

4. From CommonTasker to AppLea: experimentation and development activities

Backend platform Pricing options
Firebase Free Plan, Flame Plan for 25 USD per month, Blaze Plan (Pay as you go)

Back4app Free Plan, Starter/Basic/Intermediate/Standard/Advanced Plans
for 4.99/14.99/34.99/49.99/99.99 USD per month, resp.

Kuzzle Free Plan, Starter/Business for 2.000/5000 USD per month resp.
custom pricing for Enterprise plans

Table 4.1: Pricing options offered by competing backend platforms.

On the other hand, Firebase raises some concerns with respect to the management of the application data. These
concerns were brought up by members of the Sarantaporo.gr in the alpha testing team during the experimenta-
tion phase this year. First of all, it is not an open source platform. The open source feature is more compatible
with the spirit of community networks but also reduces the risk of vendor lock-in practices. Second, it does
not cater for self hosting, which would allow a deployment of the backend service locally at the CN premises.
Instead, the platform services reside, operate and are being updated in the cloud. One of the advantages of
self-hosting is higher transparency and control over the data residence and use. On a related note, it prevents
possible conflicts with the EU General Data Protection Regulation (GDPR) mandates; for instance, storing
personally identifiable information of European citizens in servers based in the United States.
In what follows, we address the question of whether there are backend platforms that satisfy both the open
source and self-hosting requirements without sacrificing considerably the desirable Firebase performance fea-
tures. Out of more than ten backend alternatives, four appear to satisfy those two requirements: Parse,
Back4app, Kuzzle and Hoodie. Here are our findings and considerations on them.
Parse is a mobile and web application development platform, with a strong developer community behind it that
supports the technology. It supports push notifications and role-based access control, data security and analytics.
It provides an easy interface to create, share and filter entries but does not provide the real-time synchronization
features of Firebase. Parse comes as software modules that can be downloaded on local premises; apps making
use of Parse will have to be hosted in some platform.
Back4app is exactly such a Parse hosting platform. On the positive side, the platform features automated
provisioning and scaling of Parse Server applications, backup and recovery features, web-based management
tools and a user-friendly dashboard interface. On the negative side, it is weak with respect to documentation.
Kuzzle is designed for web, mobile, and even, IoT applications. It supports real-time pub/sub, fast search, and
geospatial queries through a scalable server, a multi-protocol API and a set of plugin engines. On the downside,
it is a young project and there is not much production experience with it (as the case with Firebase is).
Hoodie, our last option has the main advantage of simplicity. It is an offline JavaScript backend, which is based
on a so-called “no-backend” technology. It has several attractive features but, as with Kuzzle, it has not yet
gained the trust of a critical mass of developers.
In terms of pricing options, the three platforms (Parse and Hoodie do not charge as such, they are downloaded
for free but apps drawing on them have to pay for hosting) compare according to Table 4.1.
Overall, the open source tools are either relatively new, without a large app base (as in the case of Hoodie or
Kuzzle), or they lag (mainly) in terms of device synchronization features with respect to Firebase. In general,
an option like Back4app might turn out to be the favorite compromise if the requirement for retaining user data
locally to the CN premises become too strict and outweighs the performance advantages of Firebase. For the
needs of the project, however, Firebase provided a “safe” firm reference for the backend, letting us focus on the
requirements of the already demanding front end functionality, which had to account for the limited experience
of most of the intended users with mobile apps like AppLea.

D3.5: Software Experimentation 63

5. The Participatory Methodology Booklet
As a prosecution of the work of T3.1, and as a consequence of continued work and activity beyond the sheer
timeframe of the project, we report here a “scaled down,” updated version of the Multidisciplinary methodology
for the participatory design of applications for Community Networks. The methodology was introduced in
D3.3 [6], and first evaluated in D3.6 [3]. In these last months it was used with and by various communities.
In order to increase the visibility of this result and to support the future diffusion of this methodology beyond the
end of netCommons, NetHood decided to re-publish the methodology into a stand-alone booklet. The booklet
simplifies the concepts, makes them more readable than the description we published in the deliverables and
is the result of the continuous improving process we carried on during the project, based on the feedback
received during the parallel software development processes in this work package. The booklet can be found
in Appendix A to this document, and we consider it an integral part of netCommons work. The booklet format
does not match the one of the deliverable; for better readability we point the reader to the on-line pdf version1.
The booklet is part of future activities by NetHood, and will be in a constant process of improvement and
extension in the framework of an online “studio” space,2 which will be developed in the next years both online
and offline, as facilitator of processes organized in the physical spaces of NetHood, like L2003 .

1Current version is 0.6 available at: https://www.netcommons.eu/sites/default/files/pd-methodology-booklet-v0.6.pdf together with
the “cards” to be used in the development phase https://www.netcommons.eu/sites/default/files/pd-methodology-booklet-v0.
6 cards.pdf.

2See http://nethood.org/studio/.
3See http://langstrasse200.ch.

D3.5: Software Experimentation 64

https://www.netcommons.eu/sites/default/files/pd-methodology-booklet-v0.6.pdf
https://www.netcommons.eu/sites/default/files/pd-methodology-booklet-v0.6_cards.pdf
https://www.netcommons.eu/sites/default/files/pd-methodology-booklet-v0.6_cards.pdf
http://nethood.org/studio/
http://langstrasse200.ch

6. Conclusions
This deliverable concludes the open source development that was one of the goals of netCommons. During the
three year of the project we continued the development of Cloudy and PeerStreamer-ng and we completed the
development of AppLea. In this process, we constantly worked with, and within communities, and we received
countless pieces of feedback from various community networks. WP3 maximised the effort to disseminate,
deploy and co-create open source applications with communities. With three lines of research we were able to
study both the adaptation and deployment of existent applications and the creation of new ones from scratch.
We worked with CNs of three different countries, we participated to many of the events they organized (more
details are reported in D6.3) and we obtained a very high involvement, also considering that the project did not
have budget to be allocated to community members. All the people that contributed to our project and used our
software were motivated only by their own interest in the software and the methodology we proposed, and they
produced appreciation letters to show their interest and enthusiasm for netCommons results.
Furthermore, from WP3 a number of scientific results and new development emerged that open new directions
for future research and projects. We tested new technologies to support edge computing in mesh networks, we
were the first ones to propose and test the adoption of blockchain technology in the field of community and
mesh networks, we adapted and improved distributed video streaming to the community network case, and we
stimulated the use and adoption of smart farming techniques. All these activities produced high impact research
papers and will be the basis for future collaborations with communities after the end of netCommons. In some
cases, we were able to stimulate the interest of existing start-ups (like AmmbrTech) or to favour the initiative
of community network members to create their own (like the Turnantenna).

D3.5: Software Experimentation 65

Bibliography
[1] N. Facchi, F. Freitag, L. Maccari, P. Micholia, and F. Zanini, “Release of All Open Source Software for all

Applications (v1),” netCommons Deliverable D3.2, Dec. 2016. http://netcommons.eu/?q=content/release-
new-open-source-software-all-applications-v1

[2] L. Maccari, L. Baldesi, N. Facchi, R. Lo Cigno, F. Freitag, L. Navarro, R. Messeguer, M. Karaliopoulos,
P. Micholia, and A. Pilichos, “Release of All Open Source Software for all Applications (v2),”
netCommons Deliverable D3.4, Mar. 2018. https://netcommons.eu/?q=content/release-new-open-source-
software-all-applications-v2

[3] A. Papageorgiou, P. Antoniadis, M. Karaliopoulos, G. Klissiaris, V. Chryssos, L. Maccari, R. Lo Cigno,
F. Freitag, and L. Navarro, “Deployment experiences with a Multi-Disciplinary approach,” netCommons
Deliverable D3.6, Oct. 2018. https://www.netcommons.eu/sites/default/files/d3.6 v1.0.pdf

[4] R. Baig, F. Freitag, and L. Navarro, “Cloudy in guifi. net: Establishing and sustaining a community cloud
as open commons,” Future Generation Computer Systems, vol. 87, Oct. 2018.

[5] R. Baig-Viñas, L. Navarro, and R. Roca-i Tió, Multiple Dimensions of Community Network
Scalability(book chapter in ”The community network manual: how to build the Internet yourself”).
FGV Direito Rio, Nov 2018, pp. 133–158. http://bibliotecadigital.fgv.br/dspace/handle/10438/25696

[6] P. Antoniadis, I. Apostol, and A. Papageorgiou, “Multi-Disciplinary Methodology for Applications
Design for CNs, including Design Guidelines and Adoption Facilitation (v2),” netCommons Deliverable
D3.3, Mar. 2018. https://www.netcommons.eu/?q=content/multi-disciplinary-methodology-applications-
design-cns-including-design-guidelines-and-0

[7] L. Navarro, R. Baig, and F. Freitag, “Report on the Governance Instruments ant their Application to CNs
(v2),” netCommons Deliverable D1.4, Dec. 2017. https://netcommons.eu/?q=content/report-governance-
instruments-and-their-application-cns-v2

[8] A. M. Khan, F. Freitag, V. Vlassov, and P. H. Ha, “Demo abstract: Towards IoT service deployments on
edge community network microclouds,” in IEEE Conference on Computer Communications Workshops
(INFOCOM WKSHPS), April 2018.

[9] K. Batbayar, E. Dimogerontakis, R. Meseguer, L. Navarro, E. Medina, and R. M. Santos, “The rimo
gateway selection approach for mesh networks: Towards a global internet access for all,” Proceedings,
vol. 2, no. 19, 2018. http://www.mdpi.com/2504-3900/2/19/1258

[10] K. Batbayar, R. Meseguer, L. Navarro, R. Sadre, and E. Dimogerontakis, “Collaborative informed gate-
way selection in large-scale and heterogeneous networks,” in IFIP/IEEE International Symposium on
Integrated Network Management (IM), April 2019.

[11] M. Selimi, L. Cerdà-Alabern, F. Freitag, L. Veiga, A. Sathiaseelan, and J. Crowcroft, “A lightweight ser-
vice placement approach for community network micro-clouds,” Journal of Grid Computing (to appear),
2018.

[12] M. Selimi, A. Lertsinsrubtavee, A. Sathiaseelan, L. Cerdà-Alabern, and L. Navarro, “PiCasso: Enabling
Information-Centric Multi-tenancy at the Network’s Edge,” Submitted to Elsevier Computer Networks,
Jan. 2019.

[13] P. Antoniadis, J. Martignoni, L. Navarro, and P. Dini, Complementary Networks Meet Complementary
Currencies: Guifi.net Meets Sardex.net. FGV Direito Rio, Nov 2018, pp. 189–222. http:
//bibliotecadigital.fgv.br/dspace/handle/10438/25696

D3.5: Software Experimentation 66

http://netcommons.eu/?q=content/release-new-open-source-software-all-applications-v1
http://netcommons.eu/?q=content/release-new-open-source-software-all-applications-v1
https://netcommons.eu/?q=content/release-new-open-source-software-all-applications-v2
https://netcommons.eu/?q=content/release-new-open-source-software-all-applications-v2
https://www.netcommons.eu/sites/default/files/d3.6_v1.0.pdf
http://bibliotecadigital.fgv.br/dspace/handle/10438/25696
https://www.netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and-0
https://www.netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and-0
https://netcommons.eu/?q=content/report-governance-instruments-and-their-application-cns-v2
https://netcommons.eu/?q=content/report-governance-instruments-and-their-application-cns-v2
http://www.mdpi.com/2504-3900/2/19/1258
http://bibliotecadigital.fgv.br/dspace/handle/10438/25696
http://bibliotecadigital.fgv.br/dspace/handle/10438/25696

Bibliography

[14] A. R. Kabbinale, E. Dimogerontakis, M. Selimi, A. Ali, L. Navarro, and A. Sathiaseelan, “Blockchain
for economically sustainable wireless mesh networks,” arXiv preprint arXiv:1811.04078, 2018.
https://arxiv.org/abs/1811.04078

[15] F. Freitag, “On the collaborative governance of decentralized edge microclouds with blockchain-based
distributed ledgers,” in 1st International Workshop on Block Chain Technologies 4 Multi-Agent Systems
(BCT4MAS), December 2018.

[16] L. Navarro, I. Castro, A. Sathiaseelan, E. Dimogerontakis, M. Selimi, F. Freitag, and R. Baig,
“Blockchain models for universal connectivity,” Under review in Telecommunications Policy Journal,
vol. -, no. -, 2018. https://www.journals.elsevier.com/telecommunications-policy

[17] M. Selimi, A. R. Kabbinale, A. Ali, L. Navarro, and A. Sathiaseelan, “Towards blockchain-enabled
wireless mesh networks,” in Proceedings of the 1st Workshop on Cryptocurrencies and Blockchains for
Distributed Systems, CRYBLOCK@MobiSys 2018, Munich, Germany, June 15, 2018. ACM, 2018, pp.
13–18. https://doi.org/10.1145/3211933.3211936

[18] L. Ghiro, L. Maccari, and R. Lo Cigno, “Proof of networking: Can blockchains boost the next generation
of distributed networks?” in IEEE/IFIP Wireless On-demand Network systems and Services Conference
(WONS), Isola 2000, France, February 2018.

[19] C. Rey-Moreno, W. Tucker, N. Bidwell, Z. Roro, J. S. Masbulele, and J. Simó-Reigadas, “Experiences,
challenges and lessons from rolling out a rural wifi mesh network,” in 3rd ACM Symposium on Computing
for Development, ACM DEV, 2013.

[20] D. Vega, R. Baig, L. Cerdà-Alabern, E. Medina, R. Meseguer, and L. Navarro, “A technological
overview of the guifi.net community network,” Computer Networks, vol. 93, Part 2, pp. 260 – 278, 2015.
//www.sciencedirect.com/science/article/pii/S1389128615003436

[21] M. Selimi, A. M. Khan, E. Dimogerontakis, F. Freitag, and R. P. Centelles, “Cloud services in
the guifi.net community network,” Computer Networks, vol. 93, no. Part 2, pp. 373–388, 2015.
http://dx.doi.org/10.1016/j.comnet.2015.09.007

[22] P. Srisuresh, J. Kuthan, J. Rosenberg, A. Molitor, and A. Rayhan, “Middlebox communication architecture
and framework,” RFC 3303 (Informational), Internet Engineering Task Force, Tech. Rep. 3303, aug 2002.

[23] E. Dimogerontakis, R. Meseguer, and L. Navarro, “Internet access for all: Assessing a crowdsourced
web proxy service in a community network,” in International Conference on Passive and Active Network
Measurement (PAM), 2017.

[24] M. R. Casters, R. Bouman, and J. van. Dongen, Pentaho Kettle Solutions: Building Open Source ETL
Solutions with Pentaho Data Integration. Wiley, 2010.

[25] L. Maccari and R. Lo Cigno, “Monitoring Instruments for CNs (v1),” netCommons deliverable D2.5,
Dec. 2016. http://netcommons.eu/?q=content/monitoring-instruments-cns-v1

[26] ——, “Monitoring Instruments for CNs (v2),” netCommons deliverable D2.7, Dec. 2017.
https://netcommons.eu/?q=content/monitoring-cns-report-experimentations-cns-v2

[27] M. Selimi, A. M. Khan, E. Dimogerontakis, F. Freitag, and R. P. Centelles, “Cloud services in
the guifi.net community network,” Computer Networks, vol. 93, Part 2, pp. 373 – 388, 2015.
//www.sciencedirect.com/science/article/pii/S1389128615003175

[28] R. Baig, R. P. Centelles, F. Freitag, and L. Navarro, “On edge microclouds to provide local
container-based services,” in Global Information Infrastructure and Networking Symposium, GIIS, 2017,
pp. 31–36. https://doi.org/10.1109/GIIS.2017.8169801

[29] R. Baig, F. Freitag, and L. Navarro, “Cloudy in guifi.net: Establishing and sustaining a community
cloud as open commons,” Future Generation Computer Systems, vol. 87, pp. 868–887, 2018.
http://www.sciencedirect.com/science/article/pii/S0167739X1732856X

[30] A. Lertsinsrubtavee, M. Selimi, A. Sathiaseelan, L. Cerdà-Alabern, L. Navarro, and J. Crowcroft,

D3.5: Software Experimentation 67

https://arxiv.org/abs/1811.04078
https://www.journals.elsevier.com/telecommunications-policy
https://doi.org/10.1145/3211933.3211936
//www.sciencedirect.com/science/article/pii/S1389128615003436
http://dx.doi.org/10.1016/j.comnet.2015.09.007
http://netcommons.eu/?q=content/monitoring-instruments-cns-v1
https://netcommons.eu/?q=content/monitoring-cns-report-experimentations-cns-v2
//www.sciencedirect.com/science/article/pii/S1389128615003175
https://doi.org/10.1109/GIIS.2017.8169801
http://www.sciencedirect.com/science/article/pii/S0167739X1732856X

Bibliography

“Information-centric multi-access edge computing platform for community mesh networks,” in
1st ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS), 2018.
http://doi.acm.org/10.1145/3209811.3209867

[31] A. Lertsinsrubtavee, A. Ali, C. Molina-Jimenez, A. Sathiaseelan, and J. Crowcroft, “Picasso: A
lightweight edge computing platform,” in 2017 IEEE 6th International Conference on Cloud Network-
ing (CloudNet), Sept 2017.

[32] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. Braynard, “Networking
named content,” in 5th International Conference on Emerging Networking Experiments and Technologies
(CoNEXT), 2009. http://doi.acm.org/10.1145/1658939.1658941

[33] “RIFE: Architecture for an Internet for everybody,” accessed: 2018-02-10. https://rife-project.eu/
[34] “Scalable and Adaptive Internet Solutions (SAIL),” accessed: 2018-02-10. http://www.sail-project.eu
[35] “Docker technology,” https://www.docker.com/what-docker, accessed: 2018-02-10.
[36] C.-A. Sarros, A. Lertsinsrubtavee, C. Molina-Jimenez, K. Prasopoulos, S. Diamantopoulos, D. Vardalis,

and A. Sathiaseelan, “Icn-based edge service deployment in challenged networks,” in Proceedings of the
4th ACM Conference on Information-Centric Networking, ser. ICN ’17. New York, NY, USA: ACM,
2017, pp. 210–211. http://doi.acm.org/10.1145/3125719.3132096

[37] R. Baig, L. Dalmau, R. Roca, L. Navarro, F. Freitag, and A. Sathiaseelan, “Making community networks
economically sustainable, the guifi.net experience,” in Workshop on Global Access to the Internet for All,
2016. http://doi.acm.org/2940157.2940163

[38] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[39] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum Project Yellow

Paper, vol. 151, pp. 1–32, 2014.
[40] Ethereum Developers, “Clique PoA protocol & Rinkeby PoA testnet.” https://github.com/ethereum/EIPs/

issues/225
[41] A. Najjar, C. Gravier, X. Serpaggi, and O. Boissier, “Modeling User Expectations amp;amp; Satisfaction

for SaaS Applications Using Multi-agent Negotiation,” in IEEE/WIC/ACM International Conference on
Web Intelligence (WI), Oct 2016.

[42] D. Talia, “Clouds meet agents: Toward intelligent cloud services,” IEEE Internet Computing, vol. 16,
no. 2, pp. 78–81, March 2012.

[43] E. Kafetzakis, H. Koumaras, M. A. Kourtis, and V. Koumaras, “Qoe4cloud: A qoe-driven multidimen-
sional framework for cloud environments,” in 2012 International Conference on Telecommunications and
Multimedia (TEMU), July 2012, pp. 77–82.

[44] I. Apostol, R. Lo Cigno, P. Antoniadis, L. Maccari, L. Navarro, M. Karaliopoulos, M. Du-
long de Rosnay, and M. Michalis, “Dissemination Report: Summary of Dissemination
Actions and Adoption of netCommons Solutions During the Third Year,” netCommons Deliver-
able D6.3, Jan. 2019. https://netcommons.eu/?q=content/dissemination-report-summary-dissemination-
actions-and-adoption-netcommons-solutions-durin-1

[45] L. Maccari and C. Pisa, Building community networks in Italy: Hacker-led experiments to bridge the
digital divide, 2018. https://giswatch.org/en/country-report/infrastructure/italy

[46] L. Navarro, R. Baig, F. Freitag, E. Dimogerontakis, F. Treguer, M. Dulong de Rosnay, L. Maccari,
P. Micholia, and P. Antoniadis, “Report on the Existing CNs and their Organization (v2),”
netCommons Deliverable D1.2, Sept. 2016. http://netcommons.eu/?q=content/report-existing-cns-and-
their-organization-v2

[47] V. Aubree, M. Giovanella, Federica and Dulong de Rosnay, A. Messaud, and F. Tréguer,
“European Legal Framework for CNs (v3),” netCommons Deliverable D4.3, version 1.0, Aug. 2018.
https://www.netcommons.eu/?q=content/european-legal-framework-cns-v3

D3.5: Software Experimentation 68

http://doi.acm.org/10.1145/3209811.3209867
http://doi.acm.org/10.1145/1658939.1658941
https://rife-project.eu/
http://www.sail-project.eu
http://doi.acm.org/10.1145/3125719.3132096
http://doi.acm.org/2940157.2940163
https://github.com/ethereum/EIPs/issues/225
https://github.com/ethereum/EIPs/issues/225
https://netcommons.eu/?q=content/dissemination-report-summary-dissemination-actions-and-adoption-netcommons-solutions-durin-1
https://netcommons.eu/?q=content/dissemination-report-summary-dissemination-actions-and-adoption-netcommons-solutions-durin-1
https://giswatch.org/en/country-report/infrastructure/italy
http://netcommons.eu/?q=content/report-existing-cns-and-their-organization-v2
http://netcommons.eu/?q=content/report-existing-cns-and-their-organization-v2
https://www.netcommons.eu/?q=content/european-legal-framework-cns-v3

Bibliography

[48] L. Maccari, G. Gabriele, R. Lo Cigno, M. Karaliopoulos, and L. Navarro, “Assistive growth: Towards
scalable community networks topologies,” under review in the Elsevier Ad Hoc Networks, invited paper.

[49] P. Antoniadis, I. Apostol, P. Micholia, G. Klissiaris, V. Chryssos, and M. Karaliopoulos, “Multi-
Disciplinary Methodology for Applications Design for CNs, including Design Guidelines and Adoption
Facilitation (v1),” netCommons Deliverable D3.1, Jan. 2017. http://netcommons.eu/?q=content/multi-
disciplinary-methodology-applications-design-cns-including-design-guidelines-and

[50] A. Pilichos, M. Karaliopoulos, and I. Koutsopoulos, “From Community Networks to Community Data:
The AppLea Farming Mobile App,” in IEEE European Conference on Networks and Communications
(EuCNC), June 18–21 2018.

[51] L. Belli, B. d. S. Ramos, P. Antoniadis, V. Aubrée, R. Baig Viñas, A. Dadoukis, P. Dini, M. Dulong de
Rosnay, N. Echániz, K. Heimerl, M. Johnson, P. Kosakanchit, F. López Pezé, S. Mansour, S. Maglavera,
J. Martignoni, J. Mavridis, S. Meinrath, L. Navarro, H. Niavis, R. Roca i Tió, S. Sevilla, and F. Tréguer,
The community network manual: how to build the Internet yourself. FGV Direito Rio, Nov 2018.
http://bibliotecadigital.fgv.br/dspace/handle/10438/25696

D3.5: Software Experimentation 69

http://netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and
http://netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and
http://bibliotecadigital.fgv.br/dspace/handle/10438/25696

A. Participatory Design Methodology Booklet
The Booklet reported here is meant to be printed and used as a user friendly guide for interdisciplinary and
transdisciplinary groups wishing to engage in participatory design processes for local application in CNs.
As already mentioned the format is not fully compatible, for obvious reasons, with this deliverable, so read-
ability is impaired, and extraction for use impractical. For download, we refer interested readers and users to
the page of Deliverable 3.3 where new versions of the methodology booklet will be uploaded as they become
available. At the time of writing of this deliverable, the current version is version 0.6, also for the . Further
developments and co-creation of future versions of this methodology will take place at the NetHood studio.

D3.5: Software Experimentation 70

https://netcommons.eu/?q=content/multi-disciplinary-methodology-applications-design-cns-including-design-guidelines-and-0
https://www.netcommons.eu/sites/default/files/pd-methodology-booklet-v0.6.pdf
https://www.netcommons.eu/sites/default/files/pd-methodology-booklet-v0.6_cards.pdf
http://nethood.org/studio/

1

COMMUNITY SERVERS:
BRINGING COMMUNITY
NETWORKS TO THE GROUND
A methodology under construction for the participatory
design of local applications in Community Networks

DRAFT

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

71

IN
TR

O

Concept & Text:
Panayotis Antoniadis (NetHood)

Graphic design & Layout:
Luisa Lapacciana

Credits: MethodKit

The methodology is an on-going work
designed to be co-created over time.

The first version of the methodology,
published as a netCommons report,
together with detailed accounts of the
different actions. It was based on the
experience of a participatory design
process for the Sarantaporo.gr Commu-
nity Network, led by NetHood, Panayotis
Antoniadis, Ileana Apostol, and Alexan-
dros Papageorgiou.

This booklet’s version of the method-
ology has further improved through
feedback by netCommons partners
Merkouris Karaliopoulos, Aris Pilihos,
Leonardo Maccari, Felix Freitag, and
George Klissiaris.

Future versions are open to feedback
and contributions in this wiki: http://
nethood.org/studio/

This booklet is released under a Creative
Commons Attribution-ShareAlike 4.0

LOCAL
PHYSICAL

TECHNOLOGY
EFFICIENCY

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

72

3

IN
TR

O

LOCAL
PHYSICAL

TECHNOLOGY
EFFICIENCY

GLOBAL
DIGITAL
COMMUNITY
SPECIFICITY

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

73

4

“Local applications
for CNs is a myth”

The idea that Community Networks can host a wide
variety of local applications
has been always part of the vision of an Internet
built by the people for the people.

In reality, when Internet access is available, local
services tend to atrophite.

There are many reasons for this:

- Self-hosted software applications cannot easily
compete in terms of usability with their commercial
counterparts.

- Servers require maintenance and applications
careful design, and both require significant human
resources, often not available locally.

- In a fully connected world locality is losing its
importance and the notion of a community itself is
becoming more and more blurry.

JUERGEN NEUMANN,
OFF-THE-CLOUD ZONE
@TRANSMEDIALE 2016

IN
TR

O

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

74

5

Despite the challenges, developing successful local
applications for Community Networks, designed as
tools for conviviality, is important for many reasons:
social, economic, political, ecological, practical.

It is critical to find the right balance between the
global and the local. Between technology and soci-
ety. Between the digital and the physical. Between
growth and limits. Between global Internet corpora-
tions and local Community Servers.

This methodology aims to encourage community
networkers, social scientists, designers, software de-
velopers, and urbanists to work together and imag-
ine from scratch the concept of a community server,

hosting local applications that serve local needs.

The target audience of this booklet is experts on all
those fields, already using their own methodologies
and practices, but which recognize the need to find
a common understanding and language toward the
vision of a Community Server.

Keep reading if you are ready to step out of your
comfort zone and invest some extra time for imagin-
ing a more organic Internet ...

“A society of simple tools that al-
lows men to achieve purposes with
energy fully under their own control
is now difficult to imagine”

IVAN ILLICH,
TOOLS FOR

CONVIVIALITY

IN
TR

O

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

75

6

TERMINOLOGY, DEFINITIONS,
AND ASSUMPTIONS

A Community Server in a more or less powerful com-
puter, a server, hosted inside an existing Community
Network, in one of its network nodes.

A Local Application denotes the software, the digital
platform, that runs on a Community Server, and
which is accessible in principle or by design only to
people residing in a specific geographic location,
covered by the Community Network.

Hybrid Space is the complex space created by the
combination of the physical space, the geographic
area where a Local Application is accessible, and the
digital space, the digital interactions enabled by the
application.

The current draft of this methodology assumes
a running CN on top of which a set of motivated
actors wish to design and host a local application.
Future versions will include elements related to
the creation of the CN itself, in parallel or before-
hand.

IN
TR

O

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

76

7

THE PHYSICAL
SPACE
The target region could be as
small as a square and as big as
a whole city or region. An urban
garden, a neighbourhood, a valley,
a pedestrian street, a square, a
small island.

Any physical space that wishes
to build a collective identity and
facilitate social interactions for
which a locally owned and de-
signed digital space can play a key
role.

THE DIGITAL
SPACE
The design of an application
could range from the customi-
zation of an existing self-hosted
application to suit a specific sce-
nario to a completely new design
and implementation.

Examples of free software that
could be used to support digital
interactions tied to specific loca-
tions include Wordpress, Next-
Cloud, Etherpad, and more.

THE HYBRID
SPACE
In Berlin’s Prinzessinnengarten
the Neighbourhood Academy in
collaboration with UdK built a
custom application for nicely pre-
senting and archiving interviews
of visitors, making available their
collective knowledge literally in
the garden through a local WiFi
network.

Barcelona’s initiative on data sov-
ereignty ...

IN
TR

O

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

77

8

IN
TR

O
PROCESSES

TOOLSCONTEXT

THREADS
actions

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

78

9

OVERVIEW

The presented methodology is very ambitious in trying
to capture the whole complexity of a long-term collab-
orative project between different actors both internal
and external to a community, facilitating the commu-
nication across different expertises, disciplines and
perspectives.

But it also allows for an incremental adoption, starting
with a really simple “MethodKit” version of it, organized
in different “parts”: Context, Threads of action, and a
few important methodological elements

In addition, we propose a very specific, and novel, meth-
odology on how to use those methodkit cards in a long-
term iterative process inspired by agile methodologies
and jazz improvisation.

This methodology includes a list of suggested actions
or options for every card, together with guidelines and
evaluation metrics. In other words, we provide detailed
examples of how a methodkit session could evolve,
what could be the outcome by considering the different
important “things to think of, and act upon”. IN

TR
O

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

79

10

M
ET

HO
DK

IT
 C

AR
DS

EXAMPLES OF USING
THE METHODKIT CARDS

The MethodKit offers already a wide
variety of ways to use the methodkit
cards for brainstorming and collabora-
tion, and also various “canvases”.

https://methodkit.com/how-to-use/

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

80

BU
IL

DI
N

G
 B

LO
CK

S
/

CA
PI

TA
LI

ZA
TI

O
N

11

M
ET

HO
DK

IT
 C

AR
DS

CONTEXT
The context cards describe
important variables that
determine the special char-
acteristics of a community
the need to be taken into ac-
count at every stage of the
participatory design process.

TOOLS
During the implementation
of the project, there are
various existing tools and
methodologies for certain
threads of action that can be
of particular use.

COMMUNITY
Designing for real com-
munity needs is a complex
process that requires more
than inviting a few people in
a room to give feedback on
specific design choices.

PHYSICAL SPACE
Acknowledging the hybrid-
ity of space and placing the
design of a local application
in the actual physical envi-
ronment is one of the most
challenging and novel tasks
for building useful and used
community servers.

DIGITAL SPACE
The design and implementa-
tion of the local application
is the core activity of the
project but the challenge is
understand the equal impor-
tance of all the other pro-
cesses.

PROJECT
People hesitate to invest ef-
fort and time if they are not
convinced of the sustain-
ability and overall framing or
identity of the project. Make
sure to dedicate significant
resources and creativity to
this respect.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

81

12

How do you listen to the communi-
ties characteristics and needs.

Events and processes that help you
engage the community in the design
of the applications.

Capture and communicate your
understanding of community needs
and special characteristics.

Have you reserved enough time
for training the community in new
concepts?

Show who you are and be engaged,
to be trusted.

Tangible ways through which your
local network, infrastructure and
applications are made visible in the
ground, like posters, printouts and
various artefacts.

Permanent or temporal locations
where someone can learn about the
community network and its local
applications, engage in learning and
participatory process, and meet in
person the people behind the project.

Internal and external design of the
space, tools to facilitate interactions,
and artefacts to communicate the
selected framing and overall identity
of the network.

Governance mechanisms and process-
es that guarantee the sustainability of
the space and their proper functioning.

Links between the digital and the
physical through displays and other
visualizations of online interactions
combined with face2face gatherings.

LISTENING

DEDICATED
SPACES

DOCUMENTATION

LEARNING

RUNNING
THE SPACE

TRUST
BUILDING

HYBRID
INTERACTIONS

COMMUNITY
ENGAGEMENT

SPACE
INFRASTRUCTURE

M
ET

HO
DK

IT
 C

AR
DS

NETWORK
VISUALIZATION

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

82

13

Continuous design for user experi-
ence, needs, and appropriation in the
core functionality offered by your
local application.

A realistic plan for the deployment of
different versions of the software ap-
plication, including a Minimum Viable
Product

Making things easy and flexible for the
administrator is the key ingredient of
a local application for CNs

Online spaces, like physical ones, need
presence and curation. No one will use
your application if you are not “there”.

The users of the software should be
encouraged and facilitated to send
you feedback on issues and feature
requests, which can both help you im-
prove the functionality but also reveal
their needs and priorities.

APPLICATION

ADMINISTRATION

CURATION

CONTINUOUS
FEEDBACK

SOFTWARE
DEVELOPMENT

M
ET

HO
DK

IT
 C

AR
DS

Define your project’s identity in its full
complexity, and keep it updated.

Share your project’s objectives and
results.

Make sure the right people are work-
ing on the right tasks

Build relationships with local actors
but also external communities and
international networks.

Collaborate with the community to
find complementary funding for your
project.

PROJECT
IDENTITY

COMMUNICATION

ORGANIZATION

NETWORKING

FUNDING

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

83

14

The tools used for facilitating brain-
storming and playful interactions.

Creative ways to feel gaps of skills or
resources for a successful project.

Consider how your different actions
depend and/or influence each other.

Consider the need for translations
in language and concepts between
members of the team and between
the team and the community.

Establish an appropriate rhythm for
the project’s members gather to
discuss about their processes and
possible inter-dependencies between
them.

Use printed real maps during brain-
storming and participatory design
processes

TOOLS

SHORTCUTS

RELATIONSHIPS

TRANSLATION

TEMPO

REAL MAP

M
ET

HO
DK

IT
 C

AR
DS

 PLACE

 TEAM

COMMUNITY
NETWORK

LOCAL
COMMUNITY

RESOURCES

NEEDS

What are the special characteristics of
the place where your local application
will be deployed.

Available skills and perspectives
in your team.

What type of CN will host your local
application.

How is the local community related to
its CN.

More or less hidden available resourc-
es that you can use.

Why is it important to build software
suitable to run in a local environment
independently from the Internet?

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

84

15

PR
O

JE
CT

 S
CO

RE

Given the particular focus of this methodology we propose
a novel way to collaborate with the customized set of
methodkit cards presented above, using the so-called
Project Score as a triangulation and self-reflection device
between the groups that lead the different processes.
The objective of the Project Score is to visualize in a
playful and inspiring way the different actions that the
different involved actors in a participatory design process

have implemented or plan to do so.

The presentation resembles intentionally a music score
under construction, which unlike classical music is not
predefined, but like in Jazz contains just a few guiding
elements, subject to improvisation according to the
dynamics of the group and the reactions of the audience,
the community.

COMMUNITY DIGITAL SPACE

PHYSICAL SPACE PROJECT

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

85

16

An early depiction of the overall methodolo-
gy using existing methodkit cards compati-
ble with those proposed in this methodology

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

86

17

A first representation of the Community
process in the Sarantaporo case study

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

87

18

A training workshop at Pithio village
in the Sarantaporo area, using for
the first time a real map and toys for
representing the different nodes of
the network and their properties, as
suggested by the “planning for real”
methodology (see Tools).

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

88

19

In later training workshops in the Saranta-
poro area, the printed real maps of the area
became a standard tool for planning the
deployment of new nodes in the different
villages.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

89

20

A full project score during a gathering of
the community engagement and software
development teams of the netCommons
project

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

90

21

Images from
a participatory
design workshop
for netCommons
Applea farming
app

Bringing interna-
tional experts in
the Sarantaporo
village and con-
necting remotely
with a similar Com-
munity Network
in a very different
environment (New
York city) had a
great impact in
showing to the
local community
how important
is what they are
doing.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

91

22

Public presentations of the the Sarantaporo
case study at the Onassis foundation (left)
and the EU parliament (right). Presenting
the project in international and local forum
attracts attention and provides opportuni-
ties for synergies and funding.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

92

23

Informal discussions during visits to the
community without a particular reason can
prove critical for building trust and discov-
ering the real needs not often expressed in
formalized settings.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

93

24

CO
NT

EX
T

PLACE

This context variable refers to the
given environment where the project
takes place: the geographic location,
the demographics of the population,
some high-level social, political, eco-
nomic, and cultural characteristics.

It is out of the scope of this booklet
to provide a detailed analysis on how
these variables could/should influence
the implementation of the method-
ology, and this is why they are all put
together under the same context
variable.

But it is important to identify the
corresponding values and keep them
always in mind in order to reflect on
how they influence the different deci-
sions at different levels. This is critical
in the beginning of the project but
also during its evolution and especially
when important “discoveries”' about
the nature of the place are made that
can help to improve the common
understanding of the team of this very
important contextual element.

RESOURCES

Especially for low budget projects,
one should carefully identify the
available resources which will deter-
mine the priorities and feasibility of
the different steps. In short, the most
important resources on the side of
the team are the available BUDGET
and TIME, and already available SOFT-
WARE and INFRASTRUCTURE.

On the side of the community, there
might be many visible (and non-vis-
ible) resources, like available OPEN
SPACES for gatherings or training
sessions, old unused devices that
could be recycled, and so on.

SKILLS

The first important question one
needs to ask before determining the
right strategy for a participatory de-
sign process is related to the available
SKILLS and resources of the lead-
ing team and the potential external
partners.

As a basis, there should exist in the
team, on the one hand, an Applica-
tion-Designer and Software-Devel-
oper, who will implement the actual
application according to the local
needs,
and on the other hand, a Communi-
ty-Organizer and Event-Facilitator
responsible to engage and interact
with the local community and try to
identify matches between the local
needs and the functionality potentially
offered by the application.

The setting up of such a team can lead
already to a quite costly process in
terms of human resources and overall
expenses. But there are still many key
skills that should be ideally covered by
specialized people such as community

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

94

25

CO
NT

EX
T

outreach and communication, edu-
cation, documentation, funding, and
more. Community-Networking-ex-
perts would be also needed on the
technical side if they are not already
part of the target community.

The most challenging aspect is the
“cultural” differences between the
two types of expertise that need to
be combined, especially in light of the
non-obvious reasons why local appli-
cations are actually needed, especially
from the perspective of a non particu-
larly technical and/or political person.

In case where there is only one side
represented in the actual team it
would be important that someone
from the team takes the “missing”
role, e.g., an engineer playing the role
of the facilitator, or a community
organizer playing the role of the soft-
ware developer.

COMMUNITY
NETWORK

One could identify three radically
different case studies:

Affordable-Internet: This category
includes CNs which are built to pro-
vide affordable or even free Internet
access to small or large communities.
For example, there are numerous
rural or small-scale urban commu-
nity networks built by experts with
varying levels of engagement of the
local community, with the clear goal
to provide affordable Internet access.
Typical examples that fit this category
could range from the Sarantaporo.gr
network serving more than 10 villages
all the way to the OTI initiatives in the
US in Detroit and NY, among others.
Large parts of the Guifi.net network
also fit this category and the same
for Freifunk.net in Germany and
FunkFeuer in Austria, as well as the
many community ISPs that form the \
ac{FFDN} in France.

Alternative-Internet: This category
includes CNs built as big ``sovereign''

networks that do not depend on the
Internet to provide useful services at a
smaller scale. Typically, these are city-
wide or even region-wide community
networks, whose members are mostly
technically savvy and key requirement
for participation in the community is
the installation of a node. Some proj-
ects are built exactly around this idea,
like AWMN and ninux.org. Other proj-
ects, like Freifunk and Guifi.net, while
focusing on Internet connectivity have
some of their core members actively
building local (sometimes local-only)
services along these lines.

Outside-the-Internet: This category
includes typically small-scale CNs or
offline networks, built to provide local
services in a specific location, often
through a single node like the Pirate-
Box or the MAZI toolkit.

In all these three scenarios the par-
ticipatory design of local applications
makes sense but possibly for different
reasons and most importantly it is a
different ``community" that needs to
be considered.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

95

26

LOCAL ACTORS

For each of the two main types of
CNs described above, there are two
different options for the correspond-
ing type of engagement of the local
community.

In the first CN type, Affordable-In-
ternet, the community building and
maintaining the network is typically
much smaller than the community
using the network, for Internet access.
In the most participative scenario, the
first community is fully “contained”
in the second one, and it is actually
members of the ``social'' community,
a village, a neighbourhood, a wider
urban area, that have built the CN to
serve the needs of the whole commu-
nity, an Independent-CN-for-Afford-
able-Internet.

On the other extreme, there are the
cases that the main actors that built
the network come somehow from the
outside and it is only a handful of lo-
cal actors that help to maintain it with
the continuous support by the exter-
nal experts, a Supported-CN-for-Af-

fordable-Internet.

For the second CN type, Alterna-
tive-Internet, the social community
typically overlaps with the network
community. The candidate applica-
tions are to be used primarily by the
``node owners'' of the CN, those
actively engaged in the construction
of the network itself, an Indepen-
dent-CN-for-Alternative-Internet.
Ninux.org is a typical example of this
category, while AWMN is another one,
very proud for the wide range of local
services replacing all major Internet
services, developed by its members.
But there are also cases that Alter-
native-Internet CNs are meant to
serve the wider community as was
the case of RedHook WiFi, a Support-
ed-CN-for-Alternative-Internet.

Finally, there is a third category in
which the CN does not exist already
but is only ``potential'' and the
creation of the CN (together with its
local applications) is part of the objec-
tives of the overall process.

NEEDS

Before entering in the analysis of the
needs of the community one must
tackle the single question that very
often rises before, during, and after
the design and implementation of a
local application: “Why local?” . Why
it is not enough to connect to the In-
ternet and use the generic application
(cloud-based or not) that everyone
who has Internet access uses every
day?

This is a list of possible reasons, start-
ing from the more practical reasons
toward the more political ones.
NO-INTERNET-ACCESS:
in cases where Internet access is
simply not available or very limited,
local applications can actually enable
a wide range of basic digital interac-
tions not possible otherwise. This is
perhaps the most obvious scenario in
which local applications make sense.

RESILIENCY:
local applications could be seen as
an alternative to the Internet-based
services when the latter fail for var-CO

NT
EX

T

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

96

27

ious reasons (a physical disaster, an
economic or political crisis, among
others), increasing the resiliency of
the system and the community.

HIGH-PERFORMANCE:
for a certain range of applications,
local servers could help to achieve
better performance, which is especial-
ly the case when Internet connectivity
is limited of low quality (e.g., highly
asymmetric).

NET-NEUTRALITY:
the access to local applications in a
CN can enjoy the net neutrality princi-
ple of fair treatment leading to better
performance, support of local actors,
and also openness to innovation.

PHYSICAL-PROXIMITY:
local applications running on a CN can
have useful information about the
physical location of its users without
the use of any private information
such as GPS coordinates or IP ad-
dresses.

DIGITAL-SKILLS:
hosting local services and applica-
tions, exposes the local community
to the challenges of running Internet

platforms and complex issues like
privacy, freedom of expression, and
more, providing the means for digital
emancipation and education on digital
skills.

COMMUNITY-EMPOWERMENT:
the engagement of the community
not only in the creation of a commu-
nity network but also in the design
of a local application can contribute
to feelings of empowerment and in
general increase the community spirit
and social cohesion.

DATA-OWNERSHIP:
by construction, the data generated
and stored through a local application
are owned by members of the com-
munity. This ownership could/should
lead to the appropriate governance
structures for the management of
this data for which there is the unique
option, compared to Internet-based
platforms, to be democratic.

SELF-DETERMINATION:
the power over the design of a local
application, is a more subtle than
"ownership", but very critical power
potentially offered to a local commu-
nity, which could be also democrati-

cally shared among all of its members.

PRIVACY:
derived from the data ownership and
self-determination reasons, local ap-
plications could be seen as a means to
build services that collect and manage
information according to the needs of
the local community and could lead
to systems that are more respectful
to privacy and freedom of expression,
without providing an a-priori guaran-
tee for this.

CO
NT

EX
T

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

97

28

PR
O

CE
SS

ES
LISTENING COMMUNITY ENGAGEMENT

RANDOM WALK
INFORMAL DISCUSSIONS
Walk around and observe, focusing on
the numerous details of everyday life,
and engage in informal discussions.
Needs are not always conscious and
not always expressed in public, but they
express themselves in the most unex-
pected moments. So, consider to Stay
More and Let Yourself Be Surprised
when visiting the community.

EXPLORE-LOCAL-MEDIA
Nowadays a lot of a community’s
character is expressed through online
interactions in forums, social media,
news outlets. Exploring these interac-
tions, such as discussions, photos, and
videos, through appropriate hashtags
and groups can give invaluable infor-
mation. This can be explored also from
a distance and complement the more
costly in-person visits.

PERSONAL RECORDINGS
Recording the everyday life of a com-
munity through short audio interviews,
photos and videos can be a very
informative process that operates in
multiple dimensions. Observing these
recordings, and revisiting them from
time to time, reveals different hidden
layers of information on a communi-
ty’s character but also the changing
perspective of the observer.

PARTICIPATORY WORKSHOP
Participatory workshops are the most
explicit form of participatory design
and must be used with caution. While
applying different methodologies,
adaptability and improvisation, and
honesty and transparency are the two
most important qualities that you need
to develop. Note that it is often that
informal meetings are more productive
than official workshops.

ESTABLISH SMALL BETA-TESTER
GROUP
Select a few motivated people from
the community to work closer with and
engage them in testing your application
since the early stages, and share with
them regular updates based on their
feedback.

ONLINE GROUP COMMUNICATION
E-mail lists and messaging groups can
play a key role in building a community
spirit and provide quick support and
receive feedback in different phases of
the project.

COMMUNITY
PROCESS

Designing for real com-
munity needs is a complex
process that requires more
than inviting a few people in
a room to give feedback on
specific design choices.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

98

29

PR
O

CE
SS

ES

DOCUMENTATION LEARNING TRUST BUILDING

SHORT SUMMARY
Short summaries of events and infor-
mal meetings are fundamental tools for
the internal communication and coor-
dination between the project’s teams.
They should be written in a way to
highlight the most important findings,
“user stories”, and non-obvious obser-
vations. It is highly recommended that
some of these summaries are made
available to the community through an
online collaborative space or even in a
public web site or social media.

DETAILED MINUTES
When possible short summaries could
be complemented by detailed minutes
with optional comments, which should
be made available to the participants
to provide feedback and annotations.
Sometimes the annotations provide
even more useful information than
what has been said during the meet-
ings.

THICK DESCRIPTION
Detailed accounts of visits and informal
meetings can reveal important details
that often do not make it to short sum-
maries and minutes. Such details might
seem unimportant at a first glance but
they often contain a lot of subtle infor-
mation that can make a big difference
in the long-run.

TRAINING SEMINARS
Meaningful participation requires deep
understanding of the object of design
and its potential role in community’s
life. The use of real maps and toys can
make a big difference while describing
technical aspects both on the digital
and physical space. Training local peo-
ple to become themselves trainers is
both empowering and effective.

PRODUCE EDUCATIONAL MATERIAL
Learning processes need to be
supported by adequate educational
material. Ideally, this material should
be translated in the local language and
adapted to the local needs.

ESTABLISH AN EDUCATIONAL PRO-
GRAMME
Independently or in collaboration with
existing institutions or educational
centres, it would be very helpful if
education becomes a separate comple-
mentary project.

ORGANIZE A PUBLIC EVENT
Public events on the overall project,
including demos and invited guests, can
add to the credibility and transparency
of the project. They can also become
instrumental in identifying key local
actors and generating a feel of trust
regarding the intentions and integrity
of the project leaders.

PARTICIPATE IN LOCAL PROJECT
The most typical reason for failure of
an “external” participatory design proj-
ect is the perception that the project
leaders want to “do their project and
leave”, caring only to push their tech-
nology or receive their funding. Partic-
ipating in local projects and activities
and link them with one’s own project
can reverse this stereotype and build
trust, but only if it is genuine. Caring for
a community cannot be faked. Better
not start the project otherwise!

ENGAGE IN SOCIAL INTERACTIONS
Becoming part of the community
through social interactions, participa-
tion in local events and rituals, sharing
thoughts and personal stories are the
best ways for the community to get
to know you and trust you. But again,
don’t pretend to care (if you don’t)!

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

99

30

PR
O

CE
SS

ES

NETWORK VISUALIZATION DEDICATED SPACES

VISUALIZE ACCESS
Being geographically constrained, your
local network needs to communicate
its coordinates and access methods
(e.g., WiFi SSID, URL, etc), but also its
special characteristics compared to
traditional Internet services (e.g., being
a local-only network), in public space.

VISUALIZE TOPOLOGY
It can be very helpful and inspiring if
your local network is represented with
physical objects on a real map or ma-
quette, which ideally could be always
accessible in various dedicated spaces,
allowing people to understand and de-
liberate on its design and coverage, and
create feelings of ownership and pride.

VISUALIZE INFRASTRUCTURE
You can make the infrastructure visible
through posters, signs or objects de-
signed according to the selected visual
identity of the network, designating
the presence a network node (e.g.,
an antenna) or a server where they
actually are.

RUN A KIOSK
Places, like a kiosk in a square or event
or a desk in a library, where there is
information and educational material
about the network. Member of the net-
works could contribute being present
to address specific questions and give
customized advice on the potential
involvement of someone based on their
needs and skills.

PARTICIPATE
IN A COMMUNITY SPACE
Info points and meetings of a Com-
munity Network could be hosted in
welcoming community spaces, creating
opportunities for interactions and syn-
ergies with other like-minded groups.

CREATE A COMMUNITY HUB
A dedicated space for the Community
Network can provide more visibility
and opportunity for the development
of long-term learning, governance, and
community participation processes
through events, assemblies, seminars
and courses. But it needs more funding
and human resources!

PHYSICAL
SPACE PROCESS

Acknowledging the hybrid-
ity of space and placing the
design of a local application
in the actual physical envi-
ronment is one of the most
challenging and novel tasks
for building useful and used
community servers.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

100

31

SPACE INFRASTRUCTURE RUNNING THE SPACE HYBRID INTERACTIONS

INTERIOR DESIGN
The way a space is designed can make
a difference in terms of engagement,
e.g., the placement of chairs toward
one-to-many talks vs. many-to-many
gatherings. Other elements of interior
design can make it easier for people to
“step-in” or facilitate hybrid interac-
tions.

SURFACES
Surfaces for projections, announce-
ments, timetables, displays, message
boards, or brainstorming boards are
very important and should be carefully
selected and placed in the space. Gath-
ering with a few key people to discuss
informally about your concerns and
plans of action on top of a real map of
the area might lead to very valuable
feedback.

SERVER ROOM
Even if not technically necessary,
having a community server installed in
the location which hosts also physical
interactions can be convenient and
empowering.

ORGANIZE EVENT
Organize a wide variety of events rang-
ing from participatory design work-
shops and training seminars to informal
meetings and gatherings around the
network and the community. Keeping a
digital memory of them in the local net-
work can be a good starting point for
motivating the use of local applications.

OPEN DOORS
Spaces work better when they are
open in regular times announced in ad-
vance. It will help a lot of cause if there
is always someone during the selected
opening hours to inform the public
about your Community Network and
ideally organize interesting activities of
interest.

ORGANIZE ASSEMBLY
Make sure that there are regular
meetings around the governance of
the space and the establishment of
appropriate rules that will guarantee
the proper functioning and avoid mis-
understandings.

HYBRID HAPPY HOURS
Establish a certain appropriate time of
the day where people come to interact
through the local application in prox-
imity, perhaps using a big display to
visualize their interactions, but at some
point stop and take away the devices to
talk face to face.

PERMANENT INTERACTIVE DISPLAY
Project on a visible display an interac-
tive element of your local network (e.g.,
a chat room, an etherpad page or an
interactive poll). Note that you might
need to be present or check regularly
to moderate the content contributed.

SPACE ENCOUNTERS
Consider organizing digital “encoun-
ters” with other relevant spaces using a
large projection screen and appropriate
equipment that can allow people to
communicate seamlessly with the oth-
er side as a group, forming a “hybrid”
roundtable.

PR
O

CE
SS

ES

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

101

32

PR
O

CE
SS

ES

APPLICATION DESIGN SOFTWARE DEVELOPMENT

DEFINE VISUAL IDENTITY
Design the logo and decide on import-
ant visual elements, color coding, fonts,
representation of servers and wireless
access points, and more. The visual
identity is a really critical component
of your application and it is worth to
spend time engaging the community
in the process. But note that at some
point someone has to make a decision!

DEVELOP USER STORY
Describe in detail how your application
will be used over time by a specific
“target user”, based on input received
from the Community Process. For
every step, write down the information
requested and delivered and the corre-
sponding interface actions needed for
the desired outcome to be reached.

CREATE MOCK-UP
Translate a specific user story to
specific functionality offered by your
application, visualized through a
series of screens that the user will be
exposed to during this process. Take
your time exploring different options
before actually implementing the user
interface.

CHOOSE DEVELOPMENT
FRAMEWORK
This is one of the first and important
actions for the software development
thread. The selected framework will
determine the possibilities for integra-
tion with other software solutions and
the culture of developers who will be
engaged over time, among others.

DEFINE MINIMUM VIABLE PRODUCT
Decide on a minimal but functional ver-
sion of your application and establish
the whole lifecycle of the development
process based on it.

INTEGRATE EXISTING SOLUTION
You should try to minimize the “new”
software developed during the par-
ticipatory design process and depend
on core functionality on existing free
software solutions like NextCloud, Eth-
erpad, and more. These are improving
day by day and it is important to keep
an eye on the developments in this
scene.

DIGITAL
SPACE PROCESS

The design and implemen-
tation of the local applica-
tion is the core activity of
the project but the chal-
lenge is understand the
equal importance of all the
other processes.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

102

33

ADMINISTRATION CURATION CONTINUOUS FEEDBACK

SELF-HOSTING PROCESS
For local applications to be easily
adopted in different contexts they need
to be easily “self-hosted” by someone
with limited technical skills. This will
make it also easier to engage more
developers in the implementation of
the software.

CUSTOMIZATION OPTION
Make sure that you offer reasonable
and adequate options for customiza-
tion in terms of appearance, visualiza-
tion, permissions, and more, paying
attention to the increased complexity.
Ideally, a new customization option
could correspond to a specific need
and should be made available to a
specific person responsible for setting
this option.

FEDERATION API
Allowing local instances of your appli-
cation to communicate between them
or with online “aggregation” servers
can offer the option to balance the
local with the global according to the
needs of the community.

INITIALIZE ONLINE INTERACTIONS
Make sure to start using the digital
platform you develop among the most
engaged users but also the developers
and create a welcoming atmosphere
for those connecting for the first time.

INSERT MOTIVATIONAL MESSAGES
Make sure that the users of your
application feel rewarded when they
perform important actions and get
informed about the overall activity, but
do not overdo it.

MODERATE CONTENT
The more content is inserted in the
platform the more it will become
important to do some sort of moder-
ation and filtering. Making transparent
the reasoning behind your moderation
decision can increase the level of trust
and engagement of your community.

GIT* ISSUES MANAGEMENT
Online git platforms like github and
gitlab contain a very useful feature (the
“issues”) which is managed appro-
priately it could serve for a feedback
platform from all types of users (more
or less technical).

PERFORM USER TESTING
Engaging a few motivated community
members (the alpha-testers group)
to use your online platform without
any assistance while you are watching
can reveal many imperfections in the
design of the user experience of your
applications. Consider asking your test
users to create new issues on your
selected git platform documenting
these imperfections and keep a close
communication with them through a
telegram group or similar.

MONITOR USAGE
Consider implementing ways to gather
implicit and/or implicit feedback
through the actual use of the interface.
Although more difficult technically un-
derstanding how the platform is used
in practice can be very helpful.

PR
O

CE
SS

ES

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

103

BU
IL

DI
N

G
 B

LO
CK

S
/

CA
PI

TA
LI

ZA
TI

O
N

34

PROJECT IDENTITY COMMUNICATION

DEVELOP MAIN NARRATIVE
You need to distinguish between the
identity of your “product”, the local ap-
plication, and this of the overall project
for which the application is only a small
part. And then develop carefully the
narrative, the storyline, of your project.
Who are you and why you are doing it.
Note that this might change over time
so keep your mind open to adjust it
accordingly.

MAINTAIN AN INTERNAL
PROJECT DOCUMENT
It will prove very useful if the team
could collectively edit and maintain a
document where the main storyline of
your project is developed, but also the
history of important developments,
resolutions, self-reflections, etc. A
sort of a collective project diary, which
could be a wiki, a list of Etherpad doc-
uments or another collective editing
tool.

SWOT ANALYSIS
A classic tool that is worth to use regu-
larly and observe differences over time.

DIFFERENT STORIES
FOR DIFFERENT AUDIENCES
Such a multi-dimensional project re-
quires the collaboration with different
actors. Make sure you adjust your sto-
ryline according to the different target
audiences, the local community, local
stakeholders, funders or supporters
from around the world.

PRESENCE IN SOCIAL MEDIA
Today it seems obvious that a project
needs to be present in popular social
media, and keep a regular schedule of
posts. But note that this is more work
than one can imagine and perhaps it
could be a wise decision to choose only
one or two most appropriate social me-
dia channels, those most relevant for
your project and community.

ALTERNATIVE MEDIA CHANNEL
Being a project advocating for the de-
ployment of local applications it makes
sense to establish a presence also in
non-mainstream media channels using
self-hosted software like Mastodon.

PROJECT PROCESS

People hesitate to invest
effort and time if they are
not convinced of the sus-
tainability and overall fram-
ing or identity of the proj-
ect. Make sure to dedicate
significant resources and
creativity to this respect.

PR
O

CE
SS

ES

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

104

35

ORGANIZATION NETWORKING FUNDING

SHIFT ROLE OF COORDINATOR
In such a complex project, individual
teams need significant freedom and
for this coordination becomes critical.
It is very important to shift the role
of the coordinator over time to give
responsibility to multiple members of
the project

BALANCE BETWEEN VOLUNTEER
AND PAID WORK
Depending on the funding sources
some members of the team might
be possible to get paid while others
not, and the same hold for the local
community. Make sure to take “correc-
tive” actions, formally or informally, to
establish a culture of fairness and trust
inside the project.

IDENTIFY NEED FOR HELP
If certain threads of action are consid-
ered important but do not perform as
expected, discuss with the team about
the possible reasons and seek for help
either inside the team or by engaging
external actors. Sometimes you can get
support with clever win-win collab-
orations, e.g., with students working
on related topics, local actors having
complementary objectives, etc.

FIND THE COMMUNITY CHAMPION
OF YOUR PROJECT
If you don’t manage to engage a few
key local actors that believe in your
project and would be willing to invest
some effort to support it, it will be very
difficult, or even impossible, for it to be
adopted by the wider community.

ORGANIZE LOCAL EVENTS
WITH EXTERNAL GUESTS
If possible it would be very helpful to
make your process a special case of a
wider (e.g., interna-
tional) project and link to activities of
other communities. Bringing visitors
from these international communities
in local events can be very effective in
gaining the attention and trust of your
local community.

BUILD SYNERGIES
WITH COMPLEMENTARY PROJECTS
Local networks share many values with
other similar initiatives on housing,
food, public spaces, money, energy, and
more. Make sure that you are in touch
with key people from such initiatives
and join forces on different fronts: com-
munication, funding, engagement.

EXPLORE LOCAL AND EXTERNAL
FUNDING SOURCES
Produce a comprehensive list of pos-
sible funding sources identifying the
key objectives of the funder, the time
frame, and the resources required from
your side to apply. There are very often
many neglected and underestimated
sources of funding both at a local and
global level.

SUPPORT FUNDING EFFORTS
OF LOCAL ACTORS
If you have an already funded project,
consider to use it as a driver and sup-
port structure for other local funding
efforts, which will then provide com-
plementary resources and also help to
build trust.

ORGANIZE A FUNDRAISING
WORKSHOP
Bringing together key actors in a work-
shop dedicated on this topic (possibly
public) can reveal complementarities
and common objectives of funders, not
clear beforehand.

PR
O

CE
SS

ES

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

105

36

M
ET

HO
DO

LO
GI

CA
L

EL
EM

EN
TS

RELATIONSHIPS AND NOTATION

Many of the actions exemplified above depend on each
other’s input/output or have other types of relationships
like before/after vs. parallel or different forms of depen-
dence like the success of one influences the success of the
other.

It can be very inspiring for a team to reflect on such rela-
tionships between their actions and try to draw them on
the PROJECT SCORE

The actual Notation might differ from project to project
depending on the actual relationships that are useful to
identify between the different actions and it does not need
to be formalized.

Improvising during the Checkpoint gatherings might prove
an inspiring and playful group experience that will add to
build common understandings.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

106

37

M
ET

HO
DO

LO
GI

CA
L

EL
EM

EN
TS

GIT*
A very interesting feature of the
github/gitlab platforms, which is
worth exploring is the so-called
“Issues”. What is interesting with this
feature is that it has the potential of
mixing the design with the software
process in very interesting ways,
but it is not straightforward how to
achieve a good balance since the
primary use of github/gitlab is by the
software developers and mixing bug
fixes and low-level technical issues
with high-level UX design might be
complex.

In short, github can be a little intim-
idating for non-technical people but
mostly in terms of content and not
in terms of functionality since as a
discussion forum, for example, github
is rather user-friendly. In any case,
github will likely not succeed to en-
gage all typologies of actors in
a given community. For this, it is im-
portant to include in the team “trans-
lators” that can get feedback from
the field and translate it into the more
technical language that will be
developed inside github.

CANVASES
MethodKit provides nicely designed
versions of standard and customized
version of “Canvases” for Strengths
Weaknesses Opportunities Threats
(SWOT) analyses and business mod-
els, which are freely available as pdf.

PLANNING
FOR REAL
There are numerous methodologies
for community engagement through
participatory workshops of various
kinds. If there are experts on this topic
as part of the team, most probably
they will have their own preferenc-
es about which event, workshop,
brainstorming session methodology
is most appropriate and it is very im-
portant that someone feels confident
and comfortable in applying such a
methodology in public.

The “planning for real” methodology
is an especially interesting approach
not typically present in related hand-
books:

1. create a physical model of the area
of interest;
2. catch people’s eye and interest for
simply coming over at the meeting in
the first place, in a non-committal free
and open way;
3. open up the discussions toward ex-
pressing interests, values and desires;
4. try things out, before making com-
mitments;
5. create implementation options by
means of triangulators (e.g., option
cards);
6. engage those interested gradually
in the participatory process, by getting
nearer and nearer to a commitment,
and develop an action plan according
to the revealed skills;
7. form action groups around a partic-
ular kind of action.

FACILITATION
There are numerous event facilitation
guides There are numerous event fa-
cilitation guides but in our context the
Project Planning and Facilitation tools
by OTI, are a good starting point.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

107

38

TI
PS

 &
 R

EA
DI

NG
S

TIPS ON USING
THE METHODOLOGY
Notice that it will be very rare that all required skills and
resources will be present from the beginning in a team.
For this it is important to creatively plan for “shortcuts” in
the proposed methodology and make it possible to devel-
op a project even with the tiniest resources.

As in music, it is possible to produce interesting results
even with one chord. So, don’t hesitate to choose only
those threads of action according to the project’s resourc-
es and community needs.

Be ready for improvisations and “shortcuts” in the im-
plementation of the overall methodology. What is really
important is that the effort invested produces re-usable
results that add to a common pool of achievements in
this area. For this, the development of adequately “free”
software and the corresponding documentation are a
fundamental requirement.

Finally, note that the focus of the suggested actions and
guidelines are on activities that are important for the
communication between different teams. Internally each
process can follow more detailed and relevant methodol-
ogies for the corresponding tasks.

FURTHER READING
The netCommons reports D3.1 and D3.3 contain a detailed
account of a participatory design process that is under
development in the area of Sarantaporo. The netCommons
report D3.6 contains a detailed review of the initial version
of the methodology produced based on our experiences in
Sarantaporo. All reports are available at:
https://www.netcommons.eu/?q=content/delivera-
bles-page

Co-creation of the methodology:

You can contribute to the CommunityServer wiki with
feedback on currently listed methodological elements and
proposing new ones based on your experience in this wiki:
http://nethood.org/studio/

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

108

40

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

109

PLACE

 TEAM RESOURCES NEEDS

COMMUNITY
NETWORK

LOCAL
COMMUNITY

What are the special characteristics
of the place where your local appli-

cation will be deployed.

Available skills and perspectives
in your team.

More or less hidden available re-
sources that you can use.

Why is it important to build soft-
ware suitable to run in a local

environment independently from
the Internet?

What type of CN will host
your local application.

How is the local community
related to its CN.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

110

TEMPO

SHORTCUTS

TRANSLATION

RELATIONSHIPS

TOOLS

REAL MAP

Establish an appropriate rhythm
for the project’s members gather
to discuss about their processes
and possible inter-dependencies

between them.

Creative ways to feel gaps
of skills or resources

for a successful project.

Consider the need for translations
in language and concepts between
members of the team and between

the team and the community.

Consider how your different
actions depend and/or influence

each other.

The tools used for facilitating brain-
storming and playful interactions.

Use printed real maps during brain-
storming and participatory design

processes A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

111

LISTENING

LEARNING

DEDICATED
SPACES

COMMUNITY
ENGAGEMENT

TRUST
BUILDING

SPACE
INFRASTRUCTURE

DOCUMENTATION

NETWORK
VISUALIZATION

RUNNING
THE SPACE

How do you listen to
the communities characteristics

and needs.

Have you reserved enough time
for training the community

in new concepts?

Permanent or temporal locations where
someone can learn about the commu-
nity network and its local applications,

engage in learning and participatory
process, and meet in person the people

behind the project.

Events and processes that help
you engage the community in the

design of the applications.

Show who you are and be engaged,
to be trusted.

Internal and external design of the
space, tools to facilitate interac-

tions, and artefacts to communicate
the selected framing and overall

identity of the network.

Capture and communicate your
understanding of community needs

and special characteristics.

Tangible ways through which your
local network, infrastructure and

applications are made visible in the
ground, like posters, printouts and

various artefacts.

Governance mechanisms
and processes that guarantee
the sustainability of the space
and their proper functioning.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

112

HYBRID
INTERACTIONS

ADMINISTRATION

PROJECT
IDENTITY

APPLICATION

CURATION

COMMUNICATION

SOFTWARE
DEVELOPMENT

CONTINUOUS
FEEDBACK

ORGANIZATION

Links between the digital
and the physical through displays
and other visualizations of online

interactions combined
with face2face gatherings.

Making things easy and flexible for
the administrator is the key ingredi-

ent of a local application for CNs

Permanent or temporal locations where
someone can learn about the commu-
nity network and its local applications,

engage in learning and participatory
process, and meet in person the people

behind the project.

Continuous design for user
experience, needs,

and appropriation in the core
functionality offered by your local

application.

Online spaces, like physical ones,
need presence and curation. No one
will use your application if you are

not “there”.

Share your project’s objectives
and results.

A realistic plan for the deployment
of different versions of the software

application, including a Minimum
Viable Product

The users of the software should be
encouraged and facilitated to send
you feedback on issues and feature
requests, which can both help you
improve the functionality but also
reveal their needs and priorities.

Make sure the right people are
working on the right tasks

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

113

NETWORKING FUNDING

Build relationships with local actors
but also external communities

and international networks.

Collaborate with the community
to find complementary funding for

your project.

A.
Participatory

Design
M

ethodology
Booklet

D3.5:Softw
are

Experim
entation

114

netCommons
Network Infrastructure as Commons

Report on the Results of the Socio-Technological
Experimentation of Open Source Software

Deliverable Number D3.5
Version 1.0

January 24, 2019

This work is licensed under a Creative Commons “Attribution-
ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://creativecommons.org/licenses/by-sa/3.0/deed.en

	1 Introduction
	2 Update on the Cloudy community cloud distribution
	2.1 Positioning the evolution of Cloudy in the context of guifi.net and beyond
	2.2 Results in 2018
	2.3 Collaborative informed gateway selection
	2.3.1 Design of the gateway selection algorithms
	2.3.2 Summary and future work

	2.4 Towards IoT Service Deployments on Edge Community Network Microclouds
	2.5 Lightweight service deployment in micro-clouds
	2.6 PiCasso: service deployment in information-centric networks and services
	2.6.1 Key Observations
	2.6.2 PiCasso: Multi-Access Lightweight Edge Computing Platform
	2.6.3 Architecture of PiCasso
	2.6.4 Discussion and implications for Cloudy

	2.7 Exploring blockchain for economically sustainable wireless mesh networks
	2.7.1 The context and analysis
	2.7.2 Blockchain: The underpinning Technology
	2.7.3 Permissionless vs Permissioned, Public vs Private
	2.7.4 Discussion
	2.7.5 Conclusion

	2.8 Exploring the Collaborative Governance of Decentralized Edge Microclouds with Blockchain-based Distributed Ledgers
	2.8.1 Architectural design and implementation options
	2.8.2 The multi-agent approach to enhance the governance of Cloudy microclouds
	2.8.3 Concluding remarks on microclouds

	2.9 Comments from members of the Cloudy community

	3 Developments and Use of the PeerStreamer Application
	3.1 Dissemination and Feedback
	3.1.1 PS-ng Communication and Diffusion
	3.1.2 Tests and Feedback Received
	3.1.2.1 The Battle of The Mesh Event
	3.1.2.2 Sarantaporo.gr
	3.1.2.3 Developments as a Consequence of User Feedback

	3.2 PartyHub
	3.3 Experimenting On Ninux
	3.3.1 The PeerStreamer-ng Architecture for ninux

	3.4 Additional activities: the Turnantenna, and the CN Graph Generator
	3.4.1 The Turnantenna
	3.4.2 The Graph Generator

	4 From CommonTasker to AppLea: experimentation and development activities
	4.1 From laboratory experimentation to field experimentation
	4.2 Evolution of the AppLea functionality through community feedback
	4.2.1 The splash page
	4.2.2 The Login Page
	4.2.3 The user profile pages
	4.2.4 The user homepage
	4.2.5 The calendar module
	4.2.6 The weather module
	4.2.7 Log history – processing capabilities
	4.2.8 Farming activity statistics

	4.3 Iterating on the app impact
	4.3.1 Interest of the local community in the app
	4.3.2 The app as an enabler of CN synergies

	4.4 A final note: open source backend alternatives to Firebase

	5 The Participatory Methodology Booklet
	6 Conclusions
	Bibliography
	A Participatory Design Methodology Booklet

